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Abstract

To understand the complex structures and relationships in graph
data while safeguarding personal privacy, subgraph counting under
differential privacy (DP) has received a lot of attention recently. The
problem is particularly important in a distributed setting, where
each node holds only its local neighboring information and the
analyst is untrusted. In the literature, two DP models are tailored for
this scenario, known as local DP and shuffle DP, whereas the latter is
equipped with a trusted shuffler that random shuffles the messages
before handing them to the analyst. Since the shuffler introduces no
additional privacy risk, any local DP protocol automatically satisfies
shuffle DP, and the key question is whether shuffle DP can offer any
improvement, especially for utility. While positive results have been
obtained for a number of basic problems, such as basic counting,
frequency estimation, and distinct count, it still remains elusive if
this is the case for any graph problem. In this paper, we advance
the understanding of this question by presenting new shuffle DP
protocols for counting various subgraphs, including triangles, 4-
cycles, and 3-hop paths, which improve upon the existing local DP
and shuffle DP protocols, both asymptotically and concretely.
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1 Introduction

Subgraph counting is essential to understanding the structures and
relationships in graph data. By counting the occurrence of specific
subgraphs, researchers can analyze clustering tendencies [27], iden-
tify communities [28], predict links [11], etc. However, disclosing

“This work was completed while the author was at Hong Kong University of Science
and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS °25, Taipei, Taiwan.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765047

Ke Yi
Hong Kong University of Science and Technology
Hong Kong, Hong Kong
yike@cse.ust.hk

the exact counts of these subgraphs may reveal sensitive personal
information.

Differential privacy (DP) [10] has become the benchmark for
personal privacy. The central model of DP assumes a trusted data
curator who possesses the entire graph and publishes privatized
subgraph counts [2, 6-9, 20, 22, 32], which is a strong requirement
that is not met in many distributed scenarios. The local and shuffle
models of DP have thus attracted much attention recently. In these
two models, each node only possesses its local neighbor informa-
tion, i.e., its adjacency list, and privatizes this information on its
own and sends privatized messages to an untrusted analyst. The
difference is that in local DP, the analyst knows who sent which
message, but in shuffle DP, they do not. The latter is equivalent to
performing a random shuffle of the messages before handing them
to the analyst, hence the name “shuffle DP”.

Since the shuffler only applies a random permutation to the mes-
sages without modifying their contents, it introduces no additional
privacy risk. The shuffle model mechanism thus inherits the pri-
vacy guarantees of the local randomizers, and any local DP protocol
automatically satisfies shuffle DP [30]. Then an interesting question
is if shuffle DP can offer better utility. Positive answers have been
obtained for many fundamental problems. For example, the error
for the bit counting problem (each user has a bit and the goal is to
estimate the number of 1’s) is! ©(+/n) under local DP [3], while
it is possible to achieve O(1) error under shuffle DP [14]; similar
improvements have also been obtained for problems like real sum-
mation [15], frequency estimation [13, 26], distinct count [5], etc.
However, it still remains an open problem whether shuffle DP can
do better for any graph problems. In this paper, we advance the
understanding of this question by showing that for many subgraph
counting problems, shuffle DP indeed allows us to obtain better
error bounds than the best known results under local DP.

1.1 Our Results

We recognize a key construct in subgraph counting, which we call
k-stars (see Section 3.3 for a formal definition). We then develop
shuffle DP protocols to count such k-stars, and show how they can
be used to count a variety of subgraphs with improved accuracy.
Table 1 summarizes our results on some of the patterns that can be
supported, in comparison with the best existing results in shuffle
DP and local DP. The protocols are compared in terms of utility
(i.e., the variance of the estimator, noting that the bias is 0 for all
the estimators), the communication cost per node, and the analyst’s
running time, where n is the number of nodes of the graph and d is
the degree upper bound.

In Figure 1, we further illustrate the asymptotic bounds on the
variance as d varies from 1 (very sparse graphs) to n (very dense

The O(-) or O(-) notation hides logarithmic factors and the dependency on &.
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Table 1: Subgraph counting protocols under shuffle DP and local DP
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Our Results Existing Results
Count Shuffle DP Shuffle DP Local DP
Variance ‘ Comm. ‘ Time Variance ‘ Comm. ‘ Time ‘ Ref Variance ‘ Comm. ‘ Time ‘ Ref
Ca O(n%d+nd®) | O(n+d'™d) | O(n? + nd™) O(n*d?) Om) | 0(m? | 1191 || O@®+nd®) | O(m) | O(n®) [12]
Co O(n2d%> +nd*>) | O(n+d'®) | O(n® +nd™) || O(n3d® +n2d®) | O(n) | O(n?) | [19] || O(n* +nd®) o(n) | o(n? Appendix
Cy O(nd*) 0(d™) O(nd'?) - - - - o(n* +n%d*) | 0(n) | O(n*) | Appendix

graphs). Note that both axes are in logarithmic scale, so a poly-
nomial function becomes a line. For example, our variance bound
for triangle counting is O(n?d + nd>). This becomes a piecewise-
linear curve: it is O(n?d) when d < v/n and O(nd®) when d > n
otherwise.

Triangles are the most important subgraph pattern, and have
received the most attention. However, the best utility so far is still
achieved by a very simple local DP protocol [12], which just applies
randomized response to every edge, although it requires O(n®)
time to compute the estimated count. The shuffle DP protocol [19]
reduces the computation time to O(n?), but the utility has been
made worse for the entire range of d. On the other hand, our new
shuffle-DP protocol improves upon the local DP protocol in terms
of both utility and time when d = o(nz/ 3); see the first row of Table
1 as well as Figure 1.

For 4-cycles, the local DP protocol using randomized response
also works, though its variance has not been analyzed. We give an
analysis in the appendix, and show the result in the second row
of Table 1. The shuffle DP protocol [19] has a better utility when
d = 0(n'/?) and worse otherwise, while our new protocol improves
over the entire range of d (see Figure 1) with less analyst’s time.
Similar improvements have also been obtained for 3-hop paths. Our
protocol can also handle many other subgraphs; please see Section
4.4 for details.

Besides asymptotic improvements, our protocols also have good
concrete performance. In Section 5, we present the experimental
results on counting triangles, 4-cycles, and 3-hop paths using real-
world graphs. The results indicate that our protocols significantly
outperform the existing shuffle DP and local DP protocols. We
also show that one can adjust the trade-off between utility and
communication/computation costs of our protocols by sampling.

Limitations. Note that, although we have obtained better shuffle-
DP protocols for many subgraph counting problems than the best
known results under local DP, whether there is a separation be-
tween shuffle-DP and local-DP for subgraph counting remains elu-
sive, which would need stronger lower bounds under local-DP for
small d (the lower bound in [12] only holds for d = ©(n)).

1.2 Related Work

In this paper, we focus on the standard, one-round model of local DP
and shuffle DP. While one-round local DP mechanisms for counting
k-stars and triangles are well-studied in [12, 17], with [12] achiev-
ing state-of-the-art accuracy for triangles and offering broader sub-
graph extensibility, the landscape for shuffle DP is less explored. To
our knowledge, [19] is the sole prior work under one-round shuffle
DP. The mechanism counts triangles and 4-cycles based on wedge

counts estimated using randomized response. Although both [19]
and our protocols share some underlying primitives, our approach
improves in the following aspects. First, our protocol is built on
k-star frequencies, which is more general than wedge counts in
the sense that wedge is a special case of k-star with k = 2. This en-
ables us to count additional subgraphs, such as 3-hop paths. Second,
we have combined sampling with k-star counting, and managed
to improve the variance bounds by carefully setting the sampling
probability. Finally, for wedge counting itself, we achieve better
accuracy. In [19], a logarithmic term in the variance arises from
amplification by shuffling. We have removed this term by the neg-
ative binomial mechanism. Multi-round protocols have also been
studied under local DP [16-18], and often achieve better utility. For
example, the very recent two-round local DP protocol [16] achieves
a variance of O(nd?) for triangle counting, which is better than
our result when d = o(+/n). However, multi-round protocols incur
larger latency, higher communication costs, and are more compli-
cated to implement (e.g., they require synchronization among the
users). Besides, [25] assumes that the graphs satisfy a certain struc-
ture; thus, it only performs well for certain types of graphs. [24]
and [29] instead count subgraphs based on the assumption that
each user has an extended view, e.g., their 2-hop neighbors, which
requires the stronger assumption that neighbors are trusted.

So far, all works under local and shuffle DP on graph problems
adopt the edge-DP policy, i.e., the presence of any edge cannot be
learned by the adversary. In central-DP, a stronger policy has also
been studied, known as node-DP, which protects the presence of
any node and all its incident edges [2, 6, 7, 22]. It is an interesting
open problem if this stronger DP policy can be supported in local
or shuffle DP.

Finally, it is worth pointing out that we work with the standard
DP definition, which provides information-theoretical privacy guar-
antees, i.e., the adversary is allowed to have unlimited computing
power. By weakening the guarantee to a computational one and
combining with secure multi-party computation (MPC) techniques,
it is possible to further reduce the variance of triangle counting
at the expense of higher computational costs and more rounds of
communication [23].

2 Preliminaries

Let [n] :={1,2,...,n}. Suppose there are n users U = {u1,...,upn},
where user u; holds data x; € X for i € [n], and they collectively
constitute the instance I = {x;};e[n]- We use I ~ I’ to denote that
the instances I and I’ are neighbors, which shall be defined more
precisely later. The distance between I and I, denoted by dist(Z, I’),
is the length of the shortest sequence (Ip = L I1,..., I =I’) such
thatI;_; ~ I; forall i € [k].
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Figure 1: Asymptotic variance bounds of subgraph counting protocols under shuffle DP and local DP as d varies.

Given an output range Z, let P(Z) denote the set of probability
distributions over Z. For any distribution $, we write z ~ # to
denote a random variable z that is distributed as . A mechanism
M : X" — P(Z) maps each instance I € X" to the distribution
M(I), and outputs a random variable z ~ M(I).

Definition 2.1 (Differential Privacy (DP) [10]). A mechanism M :
X" — P(Z) satisfies (¢, §)-DP if for any neighboring instances
I ~ I’ and any measurable subset Z C Z,

/M(I)(z)dz < e£~/M(I’)(z)dz+5.
zZ VA

We call ¢ the privacy budget. Moreover, § should be negligibly
small for the mechanism to protect privacy. When § = 0, we say
that the mechanism M satisfies pure e-DP.

Lemma 2.2 (The Basic Composition Theorem [10]). Given (¢, §)-
DP mechanisms M, ..., My, if for any neighboring instance I ~ I,
there exists at most k mechanisms M; such that M;(I) # M;(I’),
then the mechanism M = (My, ..., M) satisfies (ke, k§)-DP.

Lemma 2.3 (The Advanced Composition Theorem [10]). Given
(&, 6)-DP mechanisms My, ..., My, and some &y, if for any neigh-
boring instance I ~ I, there exists at most k mechanisms M; such
that M;(I) # M;(I’), then the mechanism M = (My,.., M;;)
satisfies (¢’, k& + 8p)-DP for

&=, [2kln(i)e+ ke(ef —1).
o

Lemma 2.4 (Post Processing [10]). Given a (probably randomized)
function f, if M satisfies (¢, §)-DP, then f o M also satisfies (¢, 9)-
DP.

Lemma 2.5 (Group Privacy [10]). Given an (¢, §)-DP mechanism
M, for any instances I and I’ such that dist(I,I’) < k and any
measurable subset Z C Z,

/ M) (z)dz < eke - / M(I')(2)dz + kekés.
Z Z

2.1 Central DP, Local DP and Shuffle DP

There are three common DP models: central DP [10], local DP [21],
and shuffle DP [30]. The mechanism M in the central DP model can
be an arbitrary function from X" to P(Z), modeling the scenario
where a trusted data curator runs M on the entire instance I. In
the local DP and shuffle DP model, each user u; € U runs a local

randomizer R : X — P(Y) on their own data x; and sends R (x;)
to the untrusted data analyst. More formally, the mechanism M in
the local DP model must take the form

M) = (R(x1), ..., R(xn)),

and the joint probability distribution of the n local randomizers
should satisfy Definition 2.1. The mechanism in the shuffle DP
model contains an additional shuffler S and

M(I) :=S(R(x1),...,R(xn)).

Here, the shuffler S performs a random shuffle of all the mes-
sages before passing them to the analyst, preventing the analyst
from identifying the sender of each message. According to the
post-processing property, if the local randomizers satisfy DP, then
shuffling their outputs still satisfies DP, so any local-DP protocol is
also a shuffle-DP protocol. Besides, in the local DP and shuffle DP
model, the analyst often runs another function A to compute the
final result A(M()).

2.2 DP in Graphs

While different DP models define the architectural roles by specify-
ing what the analyst and users can observe, it remains to specify the
neighboring relationship, i.e., what constitutes the sensitive infor-
mation to be protected, which is specified by DP policies. For graph
data, the most common DP policies are edge-DP and node-DP.

For graph problems, an instance I is an undirected graph I =
(U =V, E) on the n users (nodes), where the data held by u; is their
adjacency vector, i.e., a bit vector x; such that x; j = 1 if there is an
edge between u; and u;, and x; j = 0 otherwise. Moreover, we use
d; to denote the degree of node u;, and assume that d; < d, where
d is a given degree upper bound.

In this paper we focus on edge-DP, as with all prior work in the
local and shuffle DP model. Under edge-DP, two instances I and I’
are neighbors if they differ by one edge. More precisely, I = (U, E)
and I’ = (U, E’) are on the same set of users, while there exist
i*, j* € [n] such that

(E\E') U (E"\ E) = {{ui,uj }}.

Note that this means the adjacency vectors of I and I’ differ by
exactly two bits.

Consequently, the edge local DP model [12] combines the local
DP model with the edge DP policy:
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Definition 2.6 (Edge Local DP). Let R : {0,1}" — Y be a local
randomizer, and let

M(D) = (R(x1), ..., R(xn))

on a graph instance I with adjacency vectors x;, i € [n]. The mech-
anism M satisfies (e, §)-edge local DP if for any neighboring in-
stances I and I’ that differ by one edge, and any measurable subset
Z C Z, the following inequality holds:

/M(I)(z)dz < eg'/M(I’)(z)dz+5.
zZ zZ

The edge local DP model in [17, 18] instead defines neighboring
instances as adjacency matrices differing by one bit, and Defini-
tion 2.6 aligns with "relationship DP" in [17, 18]. These definitions
differ by a factor of 2 in distance. By group privacy, any mecha-
nism satisfying (¢, §)-DP under edge local DP in [17, 18] satisfies
(2¢, 2¢£6)-DP under Definition 2.6.

Similarly, edge shuffle DP [19] combines the shuffle DP model
with the same edge DP policy:

Definition 2.7 (Edge Shuffle DP). Let R : {0,1}" — Y be a local
randomizer, and let

M) = (R(x1), ..., R(xn))
on a graph instance I with adjacency vectors x;, i € [n]. The mech-
anism M satisfies (¢, §)-edge shuffle DP if for any neighboring

instances I and I’ that differ by one edge, and any measurable
subset Z C Z, the following inequality holds:

/M(I)(z)dz < eg-/M(I')(z)dz+5.
A 4

2.3 DP Mechanisms

In this work, we use Ber(q) to denote the Bernoulli distribution
with success probability g, and DLap(b) to denote the discrete
Laplace distribution with scale b.2 Given a discrete Laplace distri-
bution DLap(b), the variance is Var[DLap(b)] = O(b?), and with
probability at least 1 — f,

B

The first local randomizer is the discrete Laplace mechanism
Rpr, [4]. Given a function f : X — Y, let

|DLap(b)| < bln (l)

GSr = i) — :
5 r}f};(;élﬁﬁlf(ﬂ F&DI

denote the global sensitivity of the function f, the discrete Laplace
mechanism aims to estimate f(x) under local DP. The local ran-
domizer is shown in Algorithm 1, and the analyzer Apy, computes
f(x) = y as a private estimate of f(x).

Lemma 2.8. For any function f, the mechanism Rpy, satisfies pure
2¢-edge local DP. Besides, if for every pair of neighboring instances
I ~ I, the function f has the property that at most one i* satisfies
f(xi) # f(x}.), then Rpy, satisfies pure e-local DP. For any data

~ GSz
x € X, f(x) is unbiased and has a variance of O(e—zf).

1
|
2The probability density functions of the discrete Laplace distribution is < [; =le™ b .

eb +1
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Algorithm 1: The Local Randomizer Rpp,

Input :The data x € X, the function f : X — Y, the
global sensitivity GSy, the privacy budget ¢

1 send the message y = f(x) + DLap(%);

It is noted that we analyze two distinct DP guarantees: a general
privacy guarantee applicable to arbitrary functions under edge DP,
and a tighter privacy guarantee achievable only in the special case
where the computed function f(x;) differs in only one i, which
enables enhanced privacy. Both guarantees will be formally es-
tablished for all DP mechanisms in this subsection and leveraged
accordingly in the subsequent sections.

The second local randomizer is Warner’s randomized response
RRr [31]. Given a function f : X — {0, 1}, Warner’s randomized
response aims to estimate f(x) under local DP. The local random-
izer RrR is shown in Algorithm 2 and the analyzer Agg finally
computes
y-(ef+1) -1

ef —1 '

fx) =

Algorithm 2: The Local Randomizer Rrgr
Input :The data x € X, the function f : X — {0, 1}, the
privacy budget ¢
1 sample z ~ Ber(%);

2 if z = 1 then send the message y = f(x) ;
3 else send the messagey =1— f(x);

Lemma 2.9. For any function f, the mechanism Rgg satisfies pure
2¢-edge local DP. Besides, if for every pair of neighboring instances
I ~ I, the function f has the property that at most one i* satisfies
f(xir) # f(x].), then Rgg satisfies pure e-local DP. For any data

x e X, f(x) is unbiased and has a variance of (ef—_gl)z = O(E%).

The last local randomizer is the negative binomial mechanism
RNB [15]. Given a function f : X — {0} U [A] for some positive
integer A, the mechanism aims to estimate the sum

fy= > fx)
i€[n]
under shuffle DP. The general framework of the local randomizer
RNB is shown in Algorithm 3. Let Y denote the multiset of all
messages sent by the users (after shuffling), the analyzer Anp then

computes
fm=>"y
yey
as a private estimate of the sum f(I).

We see that the negative binomial mechanism sends three types
of messages. First, the message f(x) is sent directly in Line 2. Sec-
ond, a series of messages of 1 or —1 are sent in Line 5. The numbers
of such messages are drawn from a distribution peent which shall

be specified later, such that 3};c 5] (zf_il) - z(_il)) follows DLap(%),

thereby obscuring the total sum. Finally, a series of messages are
sent in Line 9, where each message takes a value t € [—A, A]. The
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Algorithm 3: The Local Randomizer RNp

1 Input :The data x € X, the function f : X — {0} U [A],
the number of user n, the parameter A, the privacy
budget ¢ and §

2 if f(x) # 0 then send a message f(x) ;

3 compute the collection of sets 7~ and distributions Pt

and {PT}req using ¢, 6, A and n;

4 sample z4; ~ Pt z_ | ~ poent,

5 send z;1 messages, where each message is 1, and send z_;
messages, where each message is —1;

6 forT € 7 do

7 sample z ~ pT,

8 forteT,t # 0do

9 ‘ send z7 messages, where each message is t;
10 end
11 end

numbers of such messages are drawn from a collection of distribu-
tions PT, T € 7, which will also be specified later. These messages
mask the difference in the count of messages for each value in
[-A, A], while ensuring that for any T € 7, };c7 t = 0. Combin-
ing these, we can demonstrate that the sum of all the messages
follows

70 = F( + DLap(5).

It is important to emphasize that users do not add direct noise to
f(x). Instead, they send additional messages with varying values
to conceal both the total sum and the count of messages for each
distinct value, thereby achieving differential privacy. In the follow-
ing, we present only the results. Interested readers can refer to [15]
for the proofs.

Lemma 2.10 ( [15]). For any given privacy budget ¢ < 4, if for
every pair of neighboring instances I ~ I’, the function f has the
property that at most one node v;- satisfies f(x;x) # f(x..), then
the local randomizer Ryp satisfies (¢, §)-shuffle DP. Moreover, for
any given privacy budget ¢ < 4 and any function f, RNp satisfies
(2, 2¢%¢ 5)-edge shuffle DP according to the group privacy property.
For any instance I € 7, f (I) is unbiased and has a variance of
Var[DLap(%)] = O(%—Z). The communication cost is O(I[f(x;) #

0] + %) bits for user u; in expectation.

Finally, we describe the distributions used in the negative bi-
nomial mechanism. Let NB(r, p) denote the negative binomial dis-
tribution (extended to real r > 0 via the gamma function) with
number of successes r and success probability p. Moreover, let
NB,,(r,p) := NB(r/n,p), so that

> NBj,(r, p) = NB(r, p).

i€[n]

We will only describe the distributions for the case A = 1, which
is the case used in this work; the general case A > 1 is more

3The parameter & appears only in logarithmic factors of the communication cost and
is therefore hidden in the O(-) notation.
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complicated and interested readers are referred to [15] for details.
Given privacy parameters ¢ and J, we set €1 = %, &9 = %, and have

T ={{+1,-1}},
P =NB, (1,1 — ™),
1
pl+L-1} _ NB,,(3(1 + log(g)), 1—e %),
It is noted that
NB(1,1—e ) -=NB(l,1-e ) = DLap(i)’
€1

thus, we can conclude that a sequence of messages sampled from
peent collectively generates the discrete Laplace noise DLap(1/e;)
to obscure the total sum, while messages sampled from P*1~1
mask counts and correlations between +1 and —1 messages.

Table 2: Summary of notations

&0 ‘ privacy parameters in (¢, §)-DP
U, uj,n U: user set; u;: i-th user in U; n: number of users
X, xi X: universe of data; x;: u;’s data

X™: universe of instances, I: instance in X", an

n — —
X%L1=(U=V.E) undirected graph with set of nodes U = V and set of edges E

V,V, v V: set of nodes; V: subset of nodes; v;: i-th node in V'
d, d; d: given degree upper bound; d;: degree of v;
Y,y Y: multiset of messages; y: a message

: output range of the mechanisms; z: an output;
Z.2B(2) Z: output rang b

P(Z): set of probability distributions over Z
M: mechanism; R: local randomizer;
S: shuffler; A: analyzer
Q. q Q: sampling procedure; ¢: sampling probability

M, R, S, A

f: generic function; fi: identity function;
fdeg: degree function; fj: bit-extraction function;
fr )+ k-star counting function

Cp, Co, Cp, etc. count of triangles, 4-cycles, 3-hop paths, etc.
A parameter in the negative binomial mechanism

I fis Jaegs fi frk

2.4 Notation

Table 2 summarizes key symbols used throughout this work. More-
over, in the following sections, there will be a slight notational
shift: when describing a graph instance I = (U, E) in Section 2.2,
we simply set U =V, treating the set of users as equivalent to the
set of nodes, thus, we may refer to “v; holding its data x;”, meaning
that node v; holds the adjacency vector x;, instead of using the user
u; representation.

Throughout the following sections, we use i and j as indices
iterating over nodes, k for the star size in k-star counting, m < n as
the number of groups to be analyzed (formally defined in Section
4.1.3), and ¢ as an index iterating over groups.

3 Main Building Blocks

In this section, we introduce the main building blocks of our mech-
anism. For completeness, we first review the local randomizers
that estimate each node’s degree and adjacency list. Following this,
we introduce our new mechanism that estimates the frequency of
specific k-stars in the graph.
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3.1 Node Degree Estimation
Let feg denote the function that computes the node degree, i.e.,
faeg(xi) =di = Z Xij.
jelnli#j
The first local randomizer Rdeg1 as shown in Algorithm 4, obfuscates

node degrees by invoking the discrete Laplace mechanism. For any
node v; € V, the analyzer finally computes d; = y;.

Algorithm 4: The Local Randomizer Rgeg

Input :The data x; € X and the privacy budget ¢
1 invoke the local randomizer y; = Rpr,(x;, fdeg: 1, %);

Lemma 3.1. For any given privacy budget ¢, the local randomizer
Reg satisfies e-edge local DP. For any node v; € V,

E[d] =d, Var[d] = o(iz).
£

Proor. Consider any neighboring instances I ~ I’ that differ
by the edge (v;+,vj+). In this case, the degrees of nodes v;+ and v
differ by at most 1. The proof then follows the basic composition
theorem and Lemma 2.8. O

3.2 Adjacent Matrix Estimation
Given the data x; € X = {0,1}", forany j € [n],let f; : X — {0,1}
be the function that returns the j-th bit of x;, i.e.,

fi(xi) = xij.

The local randomizer R,4j, as shown in Algorithm 5, then obfuscates

the adjacent matrix by invoking Warner’s Randomized Response.

For any pair of nodes v;,vj € V,i < j, the analyzer A,4; computes
Yij - (e£+l) -1

ef—1 '
Here, only the upper triangle of the adjacency matrix is obfuscated,
and the lower part can be reconstructed using symmetry.

Xij =

Algorithm 5: The Local Randomizer R,;

Input :The data x; € X and the privacy budget ¢
1 for j e [n],j>ido
2 ‘ invoke the local randomizer y; j = Rrr(xi, fj, €);
3 end

Lemma 3.2. For any given privacy budget ¢, the local randomizer
Radj satisfies e-edge local DP. For any pair of nodes v;,vj € V,i < j,

- - 1
]E[xi,j] =xi,j, Var[xi,j] =O(£—2).
The communication cost is O(n) bits.

Proor. Consider any neighboring instances I ~ I’ that differ by
the edge (v;+,vj+) such that i* < j*. In this case, only the output
distribution of Rgg (xi*, fj, €) changes. The proof then follows the
basic composition theorem and Lemma 2.9. O
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The local DP triangle counting mechanism in [12] directly uti-
lizes R,qj- The following summarizes the result. For additional
details, please refer to [12].

Theorem 3.3. Assume ¢ = ©(1), there exists an ¢-local DP trian-
gle counting mechanism that obtains an unbiased estimate with a
variance of O(n® + nd®), while the analysis time is O(n?).

3.3 k-star Frequency Estimation

The last local randomizer is our key building block. To begin with,
we first define the k-stars in a graph as follows: Given an undirected
graph instance I = (V,E), a k-star is a subgraph consisting of a
centralnode vy € V and a set of k distinct nodes vy, ..., v € V\{vg}
such that
{(vo,v;)|i € [k]} CE,

i.e., there is an edge between vy and each node v; for i € [k]. Notably,
when k = 1, this reduces to a single edge, and when k = 2, it forms
a wedge.

3.3.1 Mechanism. Estimating the frequency of specific k-stars is
exactly a sum estimation problem. In this section, we integrate the
state-of-the-art negative binomial mechanism with sampling to
develop a new sampling-based approach for counting k-stars with
different nodes serving as the leaves.

Given a subset of nodes T C V and some positive integer k > |T|,
for any node v; € V, recall that d; is the node degree of v;, we then

formally define
di = |T|
st = [ (1)

UjGT

ifo; ¢ T, and frp(x;) =0 otherwise.* If v; ¢ T, then the product
ijeT xi,j, which is a 0/1 bit, indicates whether v; is connected to
all nodes in T. If it is, then there may exist k-stars with v; being
the central node and all the nodes in T being (part of) the leaves,
and the number of such k-stars corresponds to the combinations
of k — |T| edges that can be chosen from the remaining d; — |T|
edges. Otherwise, when v; € T, there cannot exist any k-star with
v; being the central node. Therefore, f7 i (x;) is exactly the number
of k-stars with v; being the central node and all the nodes in T
being (part of) the leaves. Finally, the number of k-stars with all
the nodes in T being (part of) the leaves can be represented as

JreD) = Z Jrk(xi).

i€[n]

Example 3.1. Consider the graph instance I that consists of a
5-hop path v1 —vy —v3 —vg —vs. Given T = {v3} and k = 2, then the
function frx (x;) counts the number of 2-stars with v; being the
central node and v3 being one of the leaves. The function values
for each node are computed as follows:

fr(xe) = fri(xa) =1, fr(x1) = fri(xs) = fre(xs) =0,

Specifically, fr x(x2) = 1 as there are a 2-star centered at v with
v3 as a leaf: 01 — vp — v3. Similarly, f7x(x4) = 1 corresponds to
the 2-star v3 — 04 — v5. Summing over all nodes yields fr x (I) = 2,
indicating that there are two 2-stars in instance I with v3 being one
of the leaves.

*We define (§) = 0 forany a < b.
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Our local randomizer Rstar, Which obfuscates fr i (I) under shuf-
fle DP, is shown in Algorithm 6, where fj is the identity function.
More specifically, the mechanism works as follows: Each node v;
first computes fr ;. (x;), samples it with probability g, and then in-
vokes the negative binomial mechanism. Let Y denote the multiset
of all messages sent by the users (after shuffling), the analyzer Astar

then computes fr j (I) = é “Dyev Y-

Algorithm 6: The Local Randomizer Rtar

:The data x; € X, the function fr x, the number of
node n, the sampling probability g, the privacy
budget ¢ and §

1 <—ln(1+— (ef = 1)), 4 <—— 20, A —
2 compute fT)k(x,),

3 sample z; ~ Ber(q) and invoke the local randomizer

RNB(zi - f1 1 (%i), fi, 1, A, £q, 6q);

Input

= (5)s

3.3.2 Analysis. To analyze the privacy guarantees of Rstar, we
first establish the framework of privacy amplification by sampling.
Consider a data universe X = N where datasets I,I’” € N are
neighbors if they differ in exactly one data point. Let Q : N — N"
denote the Poisson sampling procedure where each user’s data is
sampled independently with probability g, i.e., for each user u;,

Q(x;) = {x"

0 otherwise

with probability ¢

The privacy amplification result looks as follows.’

Lemma 3.4 (Privacy Amplification by Sampling [1]). Given an
(¢/,8")-DP mechanism M : N® — P(Z), the mechanism M o Q :
N" — P(Z) satisfies (¢, §)-DP for

e=In(1+q- (£ —1)), S5=g5.

Especially when ¢/ < O(1), we have ¢ = ©(ge’).
Applying this to the negative binomial mechanism then yields:

Lemma 3.5. For any given privacy budget ¢ and sampling probabil-
ity g such that eg < 4, the local randomizer R,y satisfies (2¢, 2e%€5)-
shuffle DP. Especially when k = |T|, the local randomzier Rgtar
satisfies (¢, §)-shuffle DP.

ProoF. We first consider the simple case where k = |T|. For any
neighboring instances I ~ I’ under edge DP, at most one fr . (x;)
differs. Therefore, according to Lemma 3.4, the local randomizer
Rstar satisfies (¢, §)-shuffle DP. Instead, when k > |T|, then at most
two fr r(x;)’s differs, and the proof follows Lemma 3.4 and the
group privacy property. ]

Lemma 3.6. For any given privacy budget ¢ such that ¢ < O(1)
and any subset of nodes T C V,

Elfrx(D] = fra(D),

7 e
SBalle et al. [1] states the results specifically for the central DP model. However, we
observe that the framework and the results are also applicable to the local/shuffle DP
model, given that the data not sampled is set to 0.

N 2
Var[fr (D] = . > (fT,k(Xi))2+O(§—z)~
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Proor. The expectation is

Elfrx(D] =

(q fre)+E

and the variance is

DLap( A )]) = fri(),
q
1

p . (q' (1-9q)- Z (fT,k(xi))z + Var DLap(é)])

i€[n]
03 s vl

i€[n]

Var[ fr (D] =

The proof follows that Var[DLap(b)] = O(b?) and ¢ = ®(qeq)
when g4 < O(1).

Lemma 3.7. For any given privacy budget ¢ such that £ < O(1)
and any subset of nodes T C V, the communication cost is O(q -
I[frg(x;) #0] +q- ng) bits for node v; in expectation.

Proor. The proof follows Lemma 2.10 and ¢ = ©(geg) when
eqg < 0(1). O

Example 3.2. Consider the case where T = {v1,02} and k = 2,
then the mechanism counts the number of 2-stars in the whole
graph such that v; and v, are the leaves. We can compute A =1,
ie., frk(x;) is either 0 or 1 for any i € [n]. Thus,

D )’ = D frale) = fraD.

i€[n] i€[n]

Then we have

LD = e Varlfr(D] = 22 () + o(giz)

The communication cost is O(q - ST (xi) + %) bits for node v; in
expectation.

Example 3.3. Consider another case where T = {01} and k = 2,
then the mechanism counts the number of 2-stars in the whole
graph such that v; is one of the leaves. We can compute A = d and
set g = 1, i.e., there is no sampling, then

_ ) P
Elfrx(D] = fra(D), Varlfre(D] = O(?z)

The communication cost is O(d + %) bits for each node in expec-

tation.

4 Subgraph Counting

We then present the explicit mechanism for counting various sub-
graphs. In this work, we mainly focus on subgraphs that cannot
be entirely observed by individual nodes: For k-star counting, a
straightforward shuffle DP mechanism can be designed by com-
bining the k-star counting mechanism under local DP [17] with
privacy amplification by shuffling.
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4.1 Triangle Counting

In this section, we study the triangle counting problem. Given a
graph instance I, we focus on estimating the number of triangles in
I under shuffle DP. More specifically, we set k = 2 and the number
of triangles in I is

= )

V:{vi,vj },Ui,l)j ev

fr2(D) - xij.

It is noted that each triangle is counted three times in Cx (I). How-
ever, we can scale down the count during post-processing, which
does not affect privacy.

4.1.1  Mechanism. We first split the privacy budget. Let ¢’ = £,

2
¢’ = argmax{e : 4 /4dln(3)€ +2de(ef —1) < ¢},

and 8" = %. The local randomizer R 5 looks as follows: Each node
v first invokes the local randomizer Ryqj(x, ¢’) for analyzing the
adjacent matrix. Then for any set of nodes V = {v;, vj}, 04,05 €V,
each node v invokes the local randomizer Rgiar (x, frang e”,8")
to count the number of 2-stars such that V = {0;,0 7} are the leaves,
where q is a given sampling probability. The shuffler then shuffles
all the messages, and the analyzer A, computes

Call) = Z J;V,z(l) " Xij,

V={0;,0;},0;,0;€V

where all the fV’z(I)’s and X; ;’s are computed as described in the
building blocks in Section 3.

4.1.2  Analysis.

Theorem 4.1. For any given privacy budget ¢, the sampling proba-
bility g and the maximum degree d such that ey = In(1+ é (et -
1)) < 4, the local randomizer R, satisfies (&, §)-shuffle DP.

Proor. First, invoking the local randomizer R,4; satisfies pure
¢’-edge local (and thus shuffle) DP. Next, we notice that adding
an edge to the graph instance can change at most 2d output dis-
tributions across all local randomizers Rgtar’s. According to the
composition theorems, invoking all the local randomizers Rgtar’s
satisfies (¢, §)-shuffle DP. Therefore, the local randomizer R, sat-
isfies (¢, §)-shuffle DP. O

We then state the accuracy and efficiency guarantees, for which
we assume ¢ < 2 so that ¢/ < 1 and

Jlog()

Theorem 4.2. For any given privacy budget ¢ < 2 and sampling
probability ¢ such that g(’l’ =In(1+ é ~(ef” = 1)) < O(1), and any
instance I € 7, we have

E[Ca(D] =Ca(D),
and

- a3 1-— 42 _(n2d
Var[C, ()] = o("—z) +—1. o("—z) + o("—4).
€ q € €
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Proor. The expectation is

E[Cs(D1= ),

V={v;,0;},v;,0;€V

V={0;,0;},0;,0;€V

=Ca(I)

E[fy,(D] - E[#;]

J (D - xij

The estimate for any two sets of nodes is independent, thus, the
variance is

varlCa(n]= )

V={v;,0;},v;,0;€V

Var[fy (D) - % 5].

We first note that for any set of nodes V = {v;, 0}, 05,05 €V,
[B#:,11% = (xij)® = xi.

Combining this with the results from Example 3.2, we can compute
that for any set of nodes V = {v;, 0j}, 05,05 €V,

Var[fy (D) - %]
=Var[#; ;] - [E[fy 5 (D11 + ([E[%i;11? + Var[%; 1) - Var[fy , (D]

:0(812) (fraD) + (Xi,j + O(Eiz)) : (I?Tq oD+ é(;iz))

- (d
:O(gig) : ((fV,z(I))Z + lqu fuo (D + O(e_z))

Moreover, given the maximum degree is upper bounded by d, we
have

D fy2(D = 0(nd?),

VZ{ZJ[,Z)j},Z)i,ZJjEV
> (fy2(D)? = O(nd®).
V:{vi,vj},v,-,UjeV
Therefore, the overall variance is
Var[Ca ()]
1
:O(S_z) . Z

V={v;,0;},v;,0;€V

- (512) . (O(nd3) ; 1%  O(nd?) + o(’f—zd))
o)+ 5t o)+ ol )

Theorem 4.3. For any given privacy budget ¢ < 2 and sampling
probability g such that er’]’ = ln(1+%] -(ef” =1)) < O(1), the commu-
qn‘/a

£

(G0 + 2y +0( 5 )

[m]

nication cost for each node is O(q - d? + ) bits in expectation.

Proor. Consider any node v € V, O(n) bits are sent to analyze
the adjacent matrix. Moreover, for any node v;, it is noted that

> fl =0,

V={v;,0;},0;,0;€V

thus, according to Lemma 3.7, O(q - d% + q - %E) bits are sent in
expectation for counting the 2-stars. It is noted that each message
requires O(log(n)) additional bits to identify the specific set of
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nodes V = {v;,v;} we are working with, ensuring that the counts
for different k-stars remain distinct during the shuffling process. O

Example 4.1. Consider the case where the constant privacy budget
¢ < 2 and the graph is sparse in the sense that d1> < n. If we set

g =L, then
1— 2 2.5
_q.o(ﬂ —o[™)
q £2 £2

Vd
i.e., the sample variance is dominated by other terms. The overall

variance is (5(nd3 + n’d) and the communication cost is O(n) bits
per node in expectation. We can see that sampling does not increase
the variance much while saving the communication cost.

4.1.3  Improvement of Communication Cost. Moreover, we can re-
duce the communication cost by estimating the frequency for only
a few k-stars. More specifically, we divide the sets of nodes into n
different groups: For ¢ € [n], let

I, = {{vi,vj} 10,05 €EV,itj = ¢ (mod n)}

denote the ¢-th group of the sets of nodes. Let m be a given param-
eter denoting the number of groups that we need to analyze. We
set d = min(d, m) and split the privacy budget as follows. Let

’
[ 2 .
ebse = E—J &Y = argmax{e : 1/4d ln(g)e +2de(ef —1) < €'},
2

and ¢/ = max(eP*, 24V). We then set 6 = % if ¢/ = ¢>¢ and

& = % otherwise. The overall flow of the mechanism is modified
as well. The analyzer A, first chooses m random numbers L C [n]
and sends the numbers to each node. Then the local randomizer
R looks as follows: Each node v first invokes the local randomizer
Radj(x, €') for analyzing the adjacent matrix (but only sends the
necessary y; j’s for sets of nodes {v;,vj} € Iy, £ € L). Next, for any
set of nodes V = {v;, vj} € Iy, £ € L, each node v invokes the local
randomizer Rstar (%, fy 5. 7. G, e”,8"). The shuffler shuffles all the
messages and the analyzer A, computes

Cap=2-% Y

teL V={v;,v;} €Ty

fra(D - %ij.

The privacy guarantee remains the same. Specifically, the local
randomizer R satisfies (¢, §)-shuffle DP as long as Ef,l, =In(1+ 611 .

(e‘g// — 1)) < 4. Furthermore, the number of noisy messages can be
reduced from é(ﬂ) to é(@a)

4.2 4-cycle Counting

Our triangle-counting mechanism can be easily extended to count
4-cycles. More specifically, we set k = 2 and the number of 4-cycles

inIis
Ca(D) = Z

V={v;,0;},v;,0,€V

fi2) - (fy2(D) = 1).

Each 4-cycle is counted four times in C(I) and we can also scale
the count down during post-processing.

CCS 25, October 13-17, 2025, Taipei, Taiwan.

4.2.1 Mechanism. The privacy budgets ¢’/ and §"’ are the same as
the ones in Section 4.1.1. The local randomizer Ry looks as follows:
For any set of nodes V = {vi,0;},vi,0j € V, each node v invokes
the local randomizer Rstar (%, fy 5. 1, g, e”,8") twice. The shuffler
shuffles all the messages and the analyzer Ay can compute

o= > fL,0-(f,m-1)

V={0;,0;},0;,0;€V

where f}}, Z(I ) and f‘% 2(I ) are obtained from two separate invoca-
tions of the local randomizer Rstar-

4.2.2  Analysis. We then present the analysis. Notably, the proofs
for the privacy and efficiency analysis are similar to those in triangle
counting and are therefore omitted.

Theorem 4.4. For any given privacy budget ¢, the sampling proba-
bility g and the maximum degree d such that j = In(1+ é (et -
1)) < 4, the local randomizer Ry satisfies (¢, §)-shuffle DP.

Theorem 4.5. For any instancel € 7,
E[Ca(D)] = Ca(D).

When q = 1, for any given privacy budget ¢ < 2 and any instance
Iel,
5 5 d4 N ZdZ
Var[Co(D)] = o(”—z) + o("—4).
€ £
Instead, when q = \/LE for any given privacy budget ¢ < 2 such

that 5;1’ =In(1+ % -(ef” =1)) < 0(1) and any instance I € 7,

Var[Ca(D)] = O(nd"?) + O("—f) * é(nzfz )
£ &

Proor. The proof is similar to the one of triangle counting, and
we reuse some results from that proof. For any set of nodes V =
{vi,vj}, 0,0 € V, we have

Elfy ,(D] =EIfE (D] = Elfy (D] = fy, (D),
and

Var[fg (D] = Var[fZ , (D] = Var[ fy, (D),

where fV 5(I) is the estimate in triangle counting. Thus, the expec-
tation is

E[Co(]= ),

V={v;,0;},v;,0;€V
V={0v;,0;},v;,0;€V

=Cp (I)

Elfy,(D]- BIfE (D] -1)

fo2D - (fyo(D—-1)

The estimate for any two sets of nodes is independent, therefore,
the variance is

VarlCo(D] =

V={v;,0;},0;,0;€V

Var[fg, (D) - (2 ,(D = 1)1.
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We first analyze the variance Var|[ }}Z(I) - ;%Z(I) - 1)]. For any
set of nodes V = {v;,0;},05,0; €V,

Var[fg (D) - (2 ,(D = 1]
=Var[fy,(D] - ([E[fy o (1) — 111 + [E[fy ,(D]1* + Var[fy ,(D)])

1- ~(d 1-3 ~(d
(=L a0 +0( 5 ) o+ 25 g0 +0[ 5

Given the maximum degree is upper bounded by d, we have
D (fraD)’ =0(nd).
V={v;,0;},0;,0;€V

Therefore, the overall variance is

VarlCo(Dl = )]

V={v;,0;},v;,0;€V

Var[fg (D) - (f£,(D = 1]

=l%q . O(nd4) + (l - Q)(Zl - 3‘1) . O(nda)
q

2-4q ~(nd®\ ~(nd*\ -(n?d?
+ q_On_ +On— +On—
q £2 £2 et

When g = 1, the variance is

Var[Co()] = o("_f) ~of
&

n?d?
-

£

Instead, when ¢q = \/LE the variance is

Var[Co(D)] = O(nd*®) + é(”g—f) + é(”ifz )

]

Theorem 4.6. For any given privacy budget ¢ < 2 and sampling
probability g such that ¢f = In(1 + %1 < (ef” = 1)) < 0(1), the
gnVd

£

communication cost is O(q-d? + ) bits per node in expectation.

4.2.3 Improvement of Communication Cost. Similarly, we can re-
duce the communication cost by estimating the frequency for only
a few k-stars. We divide the sets of nodes into n groups as de-
scribed in Section 4.1.3. Given the parameter m, the number of
groups that we need to analyze, the privacy budgets ¢/’ and §”
are the same as the ones in Section 4.1.3. The overall flow of the
mechanism is modified similarly. The analyzer Ap first chooses
m random numbers L C [n] and sends the numbers to each node.
Then in the local randomizer R[, each node v invokes the local
randomizer Rtar (X, fi7 5,1, G, e”’,8") twice for any set of nodes
V = {v;,0;} € Iy, £ € L. The shuffler shuffles all the messages and
the analyzer Ap can compute

EE NI RO C=NGES)

teLVer,

fD(I) =

7
v =
In(1+ % - (ef° = 1)) < 4. The number of noisy messages can also

The local randomizer R} satisfies (¢, §)-shuffle DP as long as ¢,

be reduced by a factor of 2.
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4.3 3-hop Path Counting

We then focus on the 3-hop path counting problem. Let k = 2, and
the number of 3-hop paths in the instance I is

cu(l) = Z frony2(@) - (di = 1).
i€[n]
Each 3-hop path is counted twice in C;(I), and triangles are counted
as 3-hop paths as well. Since we can remove the triangles by count-
ing them with part of the privacy budget, we only focus on the
3-hop path counting function C;;(I) in this section.

A straightforward solution is to estimate f{,, 5 (I) directly using
the local randomizer Rstar for any node v; € V, where we add noise
proportional to A = O(d) for all the frequencies. However, many
frequencies may not vary so much between neighboring instances,
as demonstrated in Example 4.2.

Figure 2: Neighboring instances in Example 4.2.

Example 4.2. Consider the neighboring instances as shown in
Figure 2. Assume the given degree upper bound d is 4. For instance
I'in (a), we have fi,}2(I) = f{o,},2(I) = 9 and fi,) 2(I) = 7 for
any i > 3. In contrast, for the neighboring instance I’ in (b), which
removes the edge (v1,v2), we instead have fi,,} 2(I') = 6 for any i.
Therefore, the difference between f,,} 5(I) and fiy,} o(I’) is 3 for
i =1,2 and 1 for any other i.

We can verify that given the different edge (v;+,vj+) between
neighboring instances I ~ I, fi,,12(I) and f{,,} 2(I') may have a
difference proportional to O(d) if and only if i = i* or i = j*. For
any other i, fi,,}.2(I) and fi,,} 2(I") will differ by at most O(1).

Therefore, we turn to the following solution and construct a new
graph I. We add d — 1 additional nodes W = {w1,..., wy_;} to the
graph. For any node v; € V and any j € [d; — 1],® we also add an
edge between v; and w;. Then for any node v;, we have

frona@ =D xig-(dp=10)= > xig- Y Ildy—12]]

i’e[n] i’e[n] jeld-1]

= Z Z xip - Ildy =12 j] = Z fronw;y.2(D)

jeld-1]i’e[n] jeld-1]
Therefore, for any i € [n], we can estimate f{,, 1,2 (I)’s and sum
them to estimate f{,,} »(I)’s. In this scenario, for any neighboring
instances, the difference between f{u,-,wj},z(l) and f{z,l.,wj},z(l') is
at most O(1). In contrast, the difference between f,,) 2(I) and
Sl .2 (I’) can be O(d). Therefore, our new method reduces the
variance of each f{,, 2(I) by a factor of d.

Example 4.3. Given d = 3, consider the instance I in Figure 3 (a).
We construct the instance I, as shown in Figure 3 (b), as follows:
We first add two additional nodes wy and wy. Then for v, since

®We set [n] = @ when n < 0.
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(@ (b)

Figure 3: Instances in Example 4.3.

dq = 1, we do not add any edge between v; and w;, i = 1, 2. For vy,
since dy = 3, we add edges (v2, w1) and (vy, wp). Similarly, we add
edges (v3, w1) and (v4, wy) for the nodes v3 and vg. We can then
verify that

f{vz},Z(I) = f{vz,wl},Z(I_) +f{z;2,wz},2(1_) =2+0=2

and
f{vs},Z(I) = f{vs,Wl}sZ(I_) +f{vs,Wz},2(D =2+1=3.
4.3.1 Mechanism. We first split the privacy budget as follows. Let
€ =5, 8P = £ 58P = %%’
2
¢ = argmax{e : 4[4d ln(g)e +2de(ef — 1) < £8P},
and 8" = % The local randomizer R\, looks as follows: Each node

4d
v first invokes the local randomizer Rgeg (x, ¢’) to analyze the node

degrees. Then, for any i € [n], let x; € {0, 1}”‘“‘1'_1 denote the data
that the node v; holds in the instance I, i.e.,

= %
" di -1 > j-n)

For any set of nodes {v;, w;},i € [n], j € [d — 1], each node v then
invokes the local randomizer 'Rstar(f,f{u,-,w,-},z» n,q,¢’,8"). The

ifj<n

otherwise

shuffler shuffles the messages and the analyzer A\, can estimate d;
and f{v,—,wj},z(l_) for all sets of nodes {v;, wj},i € [n],j € [d—1].
Finally, the analyzer computes

=2 >, frowwpaD-(@di-1.

i€[n] je[d-1]

4.3.2  Analysis.

Theorem 4.7. For any given privacy budget ¢, the sampling proba-
bility g and the maximum degree d such that ¢/ =In(1+ 611 (et -
1)) < 4, the local randomizer R, satisfies (¢, §)-shuffle DP.

Proor. First, invoking the local randomizer Ry satisfies pure
¢’-shuffle DP. We then observe that for any neighboring instances
I ~ I, the corresponding graphs I and I’ can differ by at most 3
edges. Furthermore, any of these differing edges will change at most
2d output distributions of the local randomizer Rgtar. Therefore,
according to group privacy and the composition theorems, invoking
all local randomizer Rgta;’s satisfies (¢7, §)-shuffle DP and the local
randomizer R, satisfies (¢, §)-shuffle DP. o

Theorem 4.8. For any given privacy budget ¢ < 2 such that
=In(1+ é . (eeﬂ —1)) < O(1) and any instance I € 7, we have

E[CL(D)] = Cu(D),
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and

Var[CL(D)] = 222 0(na*y+ L1220 " ”dz o) Lo,
q ez et

Proor. For any i € [n], the expectation is

Elfo)2(Dl= >, Elfy,(D]

V={v;,w;},je[d-1]

=

V={v;,w;}.je[d~1]

fr2(D = floy2(D

and thus,
E[Cu(] = ). Blfioy2(D] - (Eldi] - 1)
i€e[n]

= > frone M (di=1) = Cu(D)

i€[n]
For any node v; € V,

Var| fio,).2(D] = D

V={v;,w;}.je[d-1]

_ (2
129 o +o(d—z).
q £

Var| fy (D]

and
Var[ fiy,}.2(D) - (di — 1)]
=Var(fo,}.2(D] - ([E[d; = 1]]% + Var[d;]) + [E[ f{,3 2(D]]?

=(1;q -0(d?) +o“(§)) : (O(dz) +o(i2)) +0(d") - o(—z)
q € €

5 oo ) o

Therefore, the overall variance is

D Varl o,y 2 (D) - (d; = 1)]

i€[n]

Var[C(D)] =

1 2\ (AN
179 o(nty + 124 o(”d ) o(i)+o(£
q q

£2 £2 et

]

Theorem 4.9. For any given privacy budget ¢ < 2 such that

” =In(1+ l (ef” - 1)) < O(1), the communication cost for each

node is O(q - d2 + q

Proor. Consider any node v € V, O(log(n)) bits are sent for
estimating the node degrees (assuming we clip the message to

[0,d]), and according to Lemma 3.7, O(q d%+ 1
sent in expectation for counting the 2-stars. O

Example 4.4. Consider the case where the constant privacy budget
& < 2. We can set q = 1, i.e., there is no sampling, then the variance
is O(nd*) and the communication cost is O(dz) messages per node

in expectation. Instead, if we set g = the variance increases

W)
to O(nd*®) while the communication cost decreases to O(d->)
messages per node in expectation.

Var[ il

|
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4.3.3  Improvement of Communication Cost. Similarly, we can re-
duce the communication cost by estimating the frequency for only
a few k-stars. Given the parameter m, the number of k-star fre-
quencies that we need to analyze, the privacy budgets ¢’ and §”
are the same as the ones in Section 4.3.1. The overall flow of the
mechanism is modified similarly. The analyzer A, first chooses
m random numbers L C [n] and sends the numbers to each node.
Then the local randomizer R/} looks as follows: Each node v first in-
vokes the local randomizer Ryeg (%, ¢”) to analyze the node degrees.
For any sets of nodes {vg, w;},f € L, j € [d — 1], each node v then
invokes the local randomizer Rstar(f,f{vhwj}’% n,qe’,8"). The
shuffler shuffles all the messages and the analyzer A, can compute

~ n o _ ~
Cuh=—->" > fronmpa@- (@ -1).
tel je[d-1]
Clearly, the privacy guarantee still holds, and the number of noisy
messages can also be reduced by a factor of 7.

4.4 General Subgraph Counting

Our mechanism can be extended to count subgraphs beyond the
ones discussed earlier. In the following paragraphs, we outline
the approach for counting the other four-node subgraphs, while
omitting the detailed analysis for brevity.

For Gg in Figure 4, we set k = 3, and the number of Gg in the
instance [ is

Con= >

V={v;,0;},0,0;€V

fvsD) - xij.

We can estimate all f;; ;(I)’s and x;,;’s using the local randomizer
Rstar and R,gj respectively. It is noted that in this particular case, we
have a scenario where k > |T|, distinguishing it from the examples
mentioned earlier.

For G7 in Figure 4, i.e. the 2-triangle, we set k = 2, and the
number of G7 in the instance I is

Co,(D=" D, fraD- (fyaD =1 i
V={0;,0;},0;,0;€V

We can estimate all f; ,(I)’s and x;,;’s using the local randomizer
Rstar and R, 4j respectively. Each 2-triangle is counted twice, and
we can also scale down the count during post-processing.

The solution for Gg in Figure 4, i.e., the complete graph on 4
nodes, is more complicated. We set k = 3 and the number of Gg in
the graph is

Ca, (1) = >,

V={0;,05,0 },0;,0j,0k €V

fos(D) - xij - Xig - Xj k-

We can estimate these values using the local randomizer Rgtar
and R,gj. One potential problem is that the communication cost
is quite high, as we need to count the k-stars for O(n®) sets of
nodes. A sparse frequency estimation protocol under shuffle DP
could potentially solve this problem. However, tackling this task is
beyond the scope of the current work, and we defer it to the future.
The examples show that any subgraph counting problem can
be viewed as dot products involving graph statistics, such as the
adjacency matrix, degree distributions, and k-star distribution. This
allows us to generalize our mechanism to count any complicated
subgraphs as long as the privacy budget is well separated.

Juanru Fang & Ke Yi
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Figure 4: Subgraphs with at most four nodes.

4.5 Summary

We assume ¢ = ©(1) and summarize the results in Table 1. For our
mechanism, we set the sampling probability ¢ = —=. The existing

results for shuffle DP come from WedgeShuffle [19], and the result
for triangle counting under local DP comes from GenlLocal [12].
To our knowledge, this is the one-round mechanism that achieves
the best accuracy guarantee, as RR [17] can only achieve a variance
of O(n*). Furthermore, GenlLocal can be extended to count any
subgraph under local DP, with the accuracy analysis in the appendix.
We report the variance, the communication cost, and the analysis
time. For both our mechanism and WedgeShuff1le, the analysis time
is proportional to the total number of messages received from the
shuffler. For GenLocal, it is instead O(n¥), where k is the number
of nodes in the target subgraph.

We begin by focusing on the shuffle DP mechanisms. Although
our mechanism incurs a slightly higher communication cost, it is
more general and exhibits a significantly lower variance across all
subgraph counting tasks. Moreover, while not stated in the table,
we can reduce the communication cost by adjusting the number of
k-stars for analysis and the sampling probability, thereby achieving
a balance between accuracy and communication cost. We then
compare our results with those under local DP. Our variance is
smaller, and a notable distinction lies in the analysis time: the local

2

DP mechanism requires an analysis time proportional to 0(n*) to
count subgraphs with k nodes, which hinders its practicality.

Table 3: Basic information of graph datasets.

Dataset H Nodes ‘ Edges ‘ Max degree ‘ Degree upper bound d

AstroPh 18,771 | 198,050 504 505
Enron 36,692 | 183,381 1,383 1,385

Facebook || 4,039 | 88,234 1,045 1,050
GrQc 5,241 14,484 81 85

5 Experiments

We conducted extensive experiments with various subgraph count-
ing queries. For comparison, we tested the following one-round
shuffle-DP mechanisms:
e GenShuffley,: Our general mechanism given the parameter
m. When m > 1, we select the sampling probability ¢ so that
the number of noisy messages sent by each node is O(n) in
expectation; when m = 1, we simply set ¢ = 1.
e WedgeShuffle [19]: The mechanism estimates wedge counts
and count triangles and 4-cycles under shuffle DP.
We do not compare our approach with other one-round local DP
mechanisms, as they are impractical or exhibit poor performance,
as demonstrated in [19].
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Table 4: Experimental Results for Subgraph Counting.

Dataset ‘ ‘ AstroPh ‘ ‘ Enron ‘ ‘ Facebook ‘ ‘ GrQc
Triangle Count 1,351,441 727,044 1,612,010 48,260
Result Error (%) Cost Error (%) Cost Error (%) Cost Error (%) Cost
GenShuffle, 18.03 38.88 MB 109.21 78.60 MB 5.15 8.59 MB 54.83 10.17 MB
GenShuffles 37.10 22.12 KB 120.42 22.12 KB 10.20 22.13 KB 112.01 22.12 KB
GenShuffleq 55.76 0.69 KB 99.36 0.69 KB 21.63 0.69 KB 83.08 0.69 KB
WedgeShuffle 74.55 0.10 KB 397.73 0.10 KB 20.46 0.10 KB 249.85 0.10 KB
4-cycle Count 44,916,549 36,262,229 144,023,053 1,054,723
Result Error (%) Cost Error (%) Cost Error (%) Cost Error (%) Cost
GenShuffle, 155.80 77.60 MB 1315.65 156.89 MB 25.96 17.15 MB 337.44 20.29 MB
GenShufflegg 34.29 797.07 KB 130.75 797.12 KB 4.28 797.10 KB 234.13 796.93 KB
GenShuffles 39.72 44.20 KB 64.64 44.20 KB 9.49 44.23 KB 101.61 44.19 KB
GenShuffleq 63.09 1.33 KB 89.52 1.33 KB 23.38 1.33 KB 97.23 1.33 KB
WedgeShuffle 42.42 0.10 KB 99.82 0.10 KB 24.19 0.10 KB 279.81 0.10 KB
3-hop Path Count 990,797,443 2,315,397,774 1,060,162,219 6,305,160
Result Error (%) Cost Error (%) Cost Error (%) Cost Error (%) Cost
GenShuffle, 0.97 6.22 MB 2.24 15.67 MB 4.00 1.37 MB 3.92 1.33 MB
GenShuffleggo 17.58 2.71 MB 39.65 6.60 MB 11.64 0.68 MB 23.00 0.62 MB
GenShuffleqgo 32.95 2.38 MB 68.21 5.79 MB 22.44 0.61 MB 38.13 0.54 MB
GenShuffle; 106.30 25.34 KB 98.48 61.47 KB 99.03 0.36 MB 105.04 5.79 KB

The experiments were conducted on a machine with a 2.2GHz
Intel Xeon CPU and 256GB memory. We repeat each experiment
50 times, remove the best 10 and the worst 10 runs, and report the
average error of the remaining runs. The default privacy budget is
£=4and § = 107°. The effect of ¢ is shown in the latter sections.

5.1 Datasets

We used the following real-world graph datasets: AstroPh, En-
ron, Facebook, and GrQc. Among the graph datasets, AstroPh
and GrQc are collaboration networks, Enron is a communication
network, and Facebook is a social network. The basic informa-
tion of the graphs is given in Table 3: AstroPh and Facebook are
comparatively dense, whereas Enron and GrQc are very sparse.

For the graph datasets, our mechanisms need a degree upper
bound d. Similar to previous work, we choose d to be higher than
the actual maximum degree, as shown in Table 3.

5.2 Experimental Results

The experimental results are shown in Table 4. We report the rela-
tive errors and the communication cost for all the mechanisms.

Specifically, for WedgeShuffle, we assume that the analyst sends
a seed for each node to pair the nodes, and nodes only send messages
when their values are non-zero. This considerably reduces the com-
munication cost. In contrast, if this approach is not implemented,
the communication costs of WedgeShuffle range from 32.82 KB to
298.12 KB. Furthermore, the analysis time is directly proportional
to the communication cost for both shuffle-DP mechanisms; thus,
we omit the timing details in this context.

For triangle counting, we set ¢ = #E for GenShuffle,. We

can see that WedgeShuffle achieves an error of less than 100%
in only two of the four instances. In contrast, our approach can
provide reasonable answers across all four instances. Moreover,
we observe that, for the dense graphs, i.e., AstrPh and Facebook,
the error decreases as m increases. However, for the sparse ones,

i.e,, Enron and GrQc, the error may increase. This occurs because,
with an increase in m, the sampling error decreases, but the DP
noise increases as we allocate the privacy budget . Moreover, the
communication cost of GenShuffle also rises with an increase of m.
When m = n, the communication cost may seem excessively high,
which appears to challenge our analysis of O(n?). However, this is
attributed to the presence of several logarithmic terms within our
communication cost calculation.

For 4-cycle counting, we also set g = #E for GenShuffley.

We can see that GenShuffle; outperforms WedgeShuffle in three
instances, and GenShuffles performs better in all four instances.
As m increases from 1 to 20, the error decreases for dense graphs,
while it may increase for sparse graphs. Moreover, we notice that
the error increases significantly when we set m = n. After careful
investigation, we note that this is because when m is large, we need
to split the privacy budget ¢ into very small portions. This leads to
the variance term

n%d?

&4

D, Varlfy, (] Varlff (0] = 6(—)

V={v;,0;},v;,0;€V

dominating all other errors, resulting in poor performance of the
mechanism. As a result, we recommend keeping the value of m
relatively low when counting 4-cycles to enhance performance.

Finally, for 3-hop path counting, we set the sampling probability
q so that the number of messages is about 20n for GenShufflejg
and GenShuffleyqo, and about 40n for GenShuffle,. The amplified
privacy budget ¢4 is carefully verified to ensure that the mechanism
satisfies DP. The results indicate that the accuracy improves as m
increases, even when the sampling probability q is progressively
reduced to satisfy the communication cost constraints. Ultimately,
when m reaches n, the mechanism obtains the lowest error. Thus,
for counting 3-hop paths, we recommend setting m = n to optimize
performance, while managing communication costs through the
sampling probability g.
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Privacy Budget e. We take triangle counting and 3-hop path
counting on AstroPh as examples, and the results are shown in
Figure 5. We first focus on our mechanism GenShuffle. The rela-
tive error and communication cost decrease as the privacy budget
increases. Moreover, the relative error of GenShuffle, decreases
much faster than that of GenShuffle,,’s where m < n. This is be-
cause the sampling error is small for GenShuffle,. However, for
others, the sampling error is the main component in the overall
error. Similarly, for WedgeShuffle, with our improvement on their
implementation, the error and the communication cost both de-
crease as the privacy budget increases. We then compare the mech-
anisms together for triangle counting. When the privacy budget
¢ is small, our mechanism GenShuffle outperforms the baselines
in terms of accuracy. In contrast, when the privacy budget ¢ is
large, all mechanisms except for GenShuffle, demonstrate similar
performance due to the dominating sampling error. In this context,
GenShuffley can achieve considerably better accuracy.

Sampling Probability q and Number of Groups m. We start by
analyzing the effect of ¢. Using triangle counting on Facebook
as the example, we evaluate GenShuffle, with various ¢ and q.

The results are shown in Figure 6. As we increase g, the error
decreases while the communication cost increases. It is intuitive,
as it represents the trade-off between accuracy and efficiency.

Next, we investigate the impact of the number of groups m.
With ¢ = 4, the results presented in Table 4 indicate that a large
m usually enhances performance for triangle counting and 3-hop
path counting. However, for 4-cycle counting, a large m can yield
unhelpful results, as explained before. We then analyze the effects
for various ¢, with the results illustrated in Figure 6. When ¢ is large,
increasing the number of groups m leads to a reduction in error and
a rise in communication costs. Conversely, when ¢ is small, such as
& = 1, the error may increase with a larger m. This phenomenon
occurs because, with a smaller ¢, the DP error is significantly greater
than the sampling error, and it escalates considerably when we
allocate the privacy budget across more groups.

To summarize, our protocols’ empirical performance depends
critically on m, while its optimal value can vary based on the density
of the input graph, the subgraph pattern, and the privacy budget.
While determining the optimal value of m in a principled man-
ner remains an open question, we provide the following empirical
guidelines according to our experimental study:

(1) A smaller m is generally better for sparse graphs, while a
larger m is better for dense graphs.

(2) A smaller m is better for 4-cycle counting, while a larger m
is better for triangle and 3-hop path counting.

(3) A smaller m is better when ¢ is small, while a larger m is
better when ¢ is large.

Degree Upper Bound d. Throughout our analysis and experiments
so far, we have assumed a degree upper bound d. While such an
upper bound is required for the general case, it is only a soft require-
ment for GenShuffley, to count triangles or 4-cycles when m < d,
i.e., the privacy guarantee of the protocol still holds even if some
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Table 5: Experimental Results for Triangle Counting on Face-
book with Various d and m.

Relative Error (%)
d H GenShuffle; ‘ GenShuffles ‘ GenShuffleyg

1050 21.63 10.20 5.69
1000 20.61 11.38 5.74
300 20.04 10.33 6.69

nodes have degrees higher than the given d. This is because when
m < d, we have d = min(d, m) = m (as defined in Section 4.1.3).
Consequently, the privacy budget is allocated using m instead of d.

Furthermore, we examine its effect on the errors by conducting
experiments on Facebook, whose degree distribution is shown
in Figure 7, and the true maximum degree is 1045. We tested
GenShuffle,, with m = 1, 5, and 20 with d = 1050, 1000 and
300. The experimental results are shown in Table 5, from which we
see that the impact of different d values on the error is not signifi-
cant. This is because, when m < d, the mechanism uses only m to
separate the privacy budget, making d irrelevant for performance.

6 Future Work

In this work, we focus mainly on one-round mechanisms. It is
well-established that for subgraph counting under edge local DP,
multi-round mechanisms exhibit superior performance compared
to one-round mechanisms. Consequently, it would be intriguing
to investigate potential enhancements to the mechanism when
employing multiple rounds. Moreover, it is known that node DP is
a stronger policy than edge DP, as it protects the presence of any
node along with all its incident edges. An interesting open question
remains whether node DP can be supported in local or shuffle DP.
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A Appendix
A.1 Subgraph Counting under Local DP

Eden et al. [12] propose a mechanism that counts the number of
triangles under local DP. The local randomizer is simply R,4;. The
analyst first estimates X; ; for any pair of i, j € [n],i < j, and
computes

Ca(h)=3- Xijj - Xjk - Xif-
{i.jkye(h).i<j<k

The mechanism achieves the following guarantees of privacy and
accuracy.

Theorem A.1. The mechanism satisfies pure ¢-local DP. For any
given privacy budget ¢ = ©(1) and any instance I € 7, E[CA(I)] =
Ca(I) and Var[CA (I)] = O(n® + nd®).

A.1.1  Extension to 3-hop Path Counting. We first consider the sim-

ple extension: The mechanism can be extended to count the number
of 3-hop paths under local DP by computing

Cuh=2- Z

{i.jk.eye(y).i<e

Xij - Xjk - X,e-

Theorem A.2. For any given privacy budget ¢ and any instance
IeI,E[Cu(])]=Cu(I)and

Var[6L(D] = O ( 4)+o( 3d2)+0("i§4).

Proor. The expectation is

E[CL(D]
=2 Z E[Xij - Xjk - Xkl
{i.jkeye(y).i<t
=2. Z E[xi;] - E[Xj k] - E[Xk,]

{ijkeye(y).i<e
=2- Z Xij * Xjk * Xk
{ijkeye(y).i<e
=Cy(I)
We then estimate the variance. We first estimate the covariance for
. . .o ’ n
different cases. First, for any i, j, k, £, ¢’ € (5),
N N N . N N 1
Cov[Xij - Xjk « Xpps Xij - Xjk - Xpr] = O | Xl X

thus,

n3d?
-

> Cov[Xij - Xjk - Xp 0o Xij - Xje - K| = O(

ijk. bt e().e<t’ ¢

Similarly, we have
D1 Covlij - Rk - Fpe Feri - Fij - Xk
ijk.te(%)

3d2
+ Cov[x; j Xk Xpps Xei - Xij ~xj,k] = O( - )

Juanru Fang & Ke Yi

These are the two cases where the two products share two x.. terms.
Similarly, we can analyze the cases where the two products only

share one ¥.. term, and the overall covariance is O(Z5- “d’ ). When
the two products do not share any X.. term, the covétiance is 0.

Therefore the whole variance is

Var[ -Cu(D)]

3d2 3d2
= Z Var[%;j - % - xk[]+0( )+O( v )
&4 £
{ijk.eye(ly).i<e

" i el ) o)

{ijkeye(y).i<t
n* n3d? n’d*
o) ol ") ol ")

A.1.2  Extension to 4-cycle Counting. The mechanism can also be
extended to count the number of 4-cycles under local DP by com-
puting

Co(l) =4- Z

{ijk.eye(}).i<j<ti<k

O

JEi,j . sz,k . ;Ck,t’ . )Z'[’l'.

Theorem A.3. For any given privacy budget ¢ and any instance
IeI,E[Ca(I)] =Ca(), and

Var[Ca(D)] = O(Z_:) + o(”if) + o(ﬁ).

£

Proor. The expectation is
E[Ca(D)]

=4- Z E[Xij - Xjj - Xie - %ei
{i.jkeye(})i<j<ti<k

=4 > E[%;;] - E[%;4] - El#k,] - E[%]
{i.jkeye(})i<j<ti<k

=4 . Z Xij - Xjk * Xpe * Xe,i
{i.jkeye(}).i<j<ti<k

=Cp (I)

and the variance is

Var[ -Ca(D)]

- Z Var[X;j - Xk - Xpp - Xei] +2X
{ijkeye(y).i<j<ti<k

( Z Cov(Xij - Xjk * Xpe - Xeis Xiyj - Xjg - Xpeypr ~ Xer,i)
{ijk.b.'ye (D) i<k,t<t’
+

COV(J?i’j . ij,k X g Xei Xij ij,k’ < Xper pr Xpr i)

{ijkk b0y e(R)i<jk<k’
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= Z (E[xij] -E[;%jz.’k] 'E[’?i,z] CE[#2,]-
{i.j.keye()i<j<ti<k

[E[%:,;1% - [E[%) 11> - E[ %11 - E[[%e]]? | +2x

( )y (BLE;1 - L% ] - [BlE117 - (Bl 1)
{ijket'ye(D)i<ke<t’
E[%g ¢] - E[X¢i] - E[X ] - E[Xp ]
+
(E[%};] - [E[%,11)-
{ijkk b0y e(h).i<jhk<k’

E[%; k] - E[xk] - E[Xei] - E[Xj ] - E[Xp ] - E[%pr ]

1
= Z O(_S) +2X
£
{i.jkeye(y).i<j<ti<k

|

1
0(—4) Xk Xt Xt Xeri
{ijk..rye(5).i<ke<t’
+

1
O(_z) CXjk ot Xhee  Xedit Xj ke X Xt
{ijk k' ey e (}).i<jk<k’

n* n%d3 nd>
ol ro )0l

When ¢ = ©(1), the variance can be simplified to O(n* + nd). O
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