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Abstract
To understand the complex structures and relationships in graph

data while safeguarding personal privacy, subgraph counting under

differential privacy (DP) has received a lot of attention recently. The

problem is particularly important in a distributed setting, where

each node holds only its local neighboring information and the

analyst is untrusted. In the literature, two DPmodels are tailored for

this scenario, known as local DP and shuffleDP, whereas the latter is

equipped with a trusted shuffler that random shuffles the messages

before handing them to the analyst. Since the shuffler introduces no

additional privacy risk, any local DP protocol automatically satisfies

shuffle DP, and the key question is whether shuffle DP can offer any

improvement, especially for utility. While positive results have been

obtained for a number of basic problems, such as basic counting,

frequency estimation, and distinct count, it still remains elusive if

this is the case for any graph problem. In this paper, we advance

the understanding of this question by presenting new shuffle DP

protocols for counting various subgraphs, including triangles, 4-

cycles, and 3-hop paths, which improve upon the existing local DP

and shuffle DP protocols, both asymptotically and concretely.
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1 Introduction
Subgraph counting is essential to understanding the structures and

relationships in graph data. By counting the occurrence of specific

subgraphs, researchers can analyze clustering tendencies [27], iden-

tify communities [28], predict links [11], etc. However, disclosing
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the exact counts of these subgraphs may reveal sensitive personal

information.

Differential privacy (DP) [10] has become the benchmark for

personal privacy. The central model of DP assumes a trusted data

curator who possesses the entire graph and publishes privatized

subgraph counts [2, 6–9, 20, 22, 32], which is a strong requirement

that is not met in many distributed scenarios. The local and shuffle

models of DP have thus attracted much attention recently. In these

two models, each node only possesses its local neighbor informa-

tion, i.e., its adjacency list, and privatizes this information on its

own and sends privatized messages to an untrusted analyst. The

difference is that in local DP, the analyst knows who sent which

message, but in shuffle DP, they do not. The latter is equivalent to

performing a random shuffle of the messages before handing them

to the analyst, hence the name “shuffle DP”.

Since the shuffler only applies a random permutation to the mes-

sages without modifying their contents, it introduces no additional

privacy risk. The shuffle model mechanism thus inherits the pri-

vacy guarantees of the local randomizers, and any local DP protocol

automatically satisfies shuffle DP [30]. Then an interesting question

is if shuffle DP can offer better utility. Positive answers have been

obtained for many fundamental problems. For example, the error

for the bit counting problem (each user has a bit and the goal is to

estimate the number of 1’s) is
1 Θ̃(
√
𝑛) under local DP [3], while

it is possible to achieve 𝑂̃ (1) error under shuffle DP [14]; similar

improvements have also been obtained for problems like real sum-

mation [15], frequency estimation [13, 26], distinct count [5], etc.

However, it still remains an open problem whether shuffle DP can

do better for any graph problems. In this paper, we advance the

understanding of this question by showing that for many subgraph

counting problems, shuffle DP indeed allows us to obtain better

error bounds than the best known results under local DP.

1.1 Our Results
We recognize a key construct in subgraph counting, which we call

𝑘-stars (see Section 3.3 for a formal definition). We then develop

shuffle DP protocols to count such 𝑘-stars, and show how they can

be used to count a variety of subgraphs with improved accuracy.

Table 1 summarizes our results on some of the patterns that can be

supported, in comparison with the best existing results in shuffle

DP and local DP. The protocols are compared in terms of utility

(i.e., the variance of the estimator, noting that the bias is 0 for all

the estimators), the communication cost per node, and the analyst’s

running time, where 𝑛 is the number of nodes of the graph and 𝑑 is

the degree upper bound.

In Figure 1, we further illustrate the asymptotic bounds on the

variance as 𝑑 varies from 1 (very sparse graphs) to 𝑛 (very dense

1
The 𝑂̃ ( ·) or Θ̃( ·) notation hides logarithmic factors and the dependency on 𝜀 .
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Table 1: Subgraph counting protocols under shuffle DP and local DP

Count

Our Results Existing Results

Shuffle DP Shuffle DP Local DP

Variance Comm. Time Variance Comm. Time Ref Variance Comm. Time Ref

𝐶△ 𝑂̃ (𝑛2𝑑 + 𝑛𝑑3) 𝑂̃ (𝑛 + 𝑑1.5) 𝑂̃ (𝑛2 + 𝑛𝑑1.5) 𝑂̃ (𝑛3𝑑2) 𝑂̃ (𝑛) 𝑂̃ (𝑛2) [19] 𝑂 (𝑛3 + 𝑛𝑑3) 𝑂 (𝑛) 𝑂 (𝑛3) [12]

𝐶□ 𝑂̃ (𝑛2𝑑2 + 𝑛𝑑4.5) 𝑂̃ (𝑛 + 𝑑1.5) 𝑂̃ (𝑛2 + 𝑛𝑑1.5) 𝑂̃ (𝑛3𝑑2 + 𝑛2𝑑6) 𝑂̃ (𝑛) 𝑂̃ (𝑛2) [19] 𝑂 (𝑛4 + 𝑛𝑑5) 𝑂 (𝑛) 𝑂 (𝑛4) Appendix

𝐶⊔ 𝑂̃ (𝑛𝑑4.5) 𝑂̃ (𝑑1.5) 𝑂̃ (𝑛𝑑1.5) - - - - 𝑂 (𝑛4 + 𝑛2𝑑4) 𝑂 (𝑛) 𝑂 (𝑛4) Appendix

graphs). Note that both axes are in logarithmic scale, so a poly-

nomial function becomes a line. For example, our variance bound

for triangle counting is 𝑂 (𝑛2𝑑 + 𝑛𝑑3). This becomes a piecewise-

linear curve: it is 𝑂 (𝑛2𝑑) when 𝑑 ≤
√
𝑛 and 𝑂 (𝑛𝑑3) when 𝑑 >

√
𝑛

otherwise.

Triangles are the most important subgraph pattern, and have

received the most attention. However, the best utility so far is still

achieved by a very simple local DP protocol [12], which just applies

randomized response to every edge, although it requires 𝑂 (𝑛3)
time to compute the estimated count. The shuffle DP protocol [19]

reduces the computation time to 𝑂̃ (𝑛2), but the utility has been

made worse for the entire range of 𝑑 . On the other hand, our new

shuffle-DP protocol improves upon the local DP protocol in terms

of both utility and time when 𝑑 = 𝑜 (𝑛2/3); see the first row of Table

1 as well as Figure 1.

For 4-cycles, the local DP protocol using randomized response

also works, though its variance has not been analyzed. We give an

analysis in the appendix, and show the result in the second row

of Table 1. The shuffle DP protocol [19] has a better utility when

𝑑 = 𝑜 (𝑛1/3) and worse otherwise, while our new protocol improves

over the entire range of 𝑑 (see Figure 1) with less analyst’s time.

Similar improvements have also been obtained for 3-hop paths. Our

protocol can also handle many other subgraphs; please see Section

4.4 for details.

Besides asymptotic improvements, our protocols also have good

concrete performance. In Section 5, we present the experimental

results on counting triangles, 4-cycles, and 3-hop paths using real-

world graphs. The results indicate that our protocols significantly

outperform the existing shuffle DP and local DP protocols. We

also show that one can adjust the trade-off between utility and

communication/computation costs of our protocols by sampling.

Limitations. Note that, although we have obtained better shuffle-

DP protocols for many subgraph counting problems than the best

known results under local DP, whether there is a separation be-

tween shuffle-DP and local-DP for subgraph counting remains elu-

sive, which would need stronger lower bounds under local-DP for

small 𝑑 (the lower bound in [12] only holds for 𝑑 = Θ(𝑛)).

1.2 Related Work
In this paper, we focus on the standard, one-roundmodel of local DP

and shuffle DP. While one-round local DP mechanisms for counting

𝑘-stars and triangles are well-studied in [12, 17], with [12] achiev-

ing state-of-the-art accuracy for triangles and offering broader sub-

graph extensibility, the landscape for shuffle DP is less explored. To

our knowledge, [19] is the sole prior work under one-round shuffle

DP. The mechanism counts triangles and 4-cycles based on wedge

counts estimated using randomized response. Although both [19]

and our protocols share some underlying primitives, our approach

improves in the following aspects. First, our protocol is built on

𝑘-star frequencies, which is more general than wedge counts in

the sense that wedge is a special case of 𝑘-star with 𝑘 = 2. This en-

ables us to count additional subgraphs, such as 3-hop paths. Second,

we have combined sampling with 𝑘-star counting, and managed

to improve the variance bounds by carefully setting the sampling

probability. Finally, for wedge counting itself, we achieve better

accuracy. In [19], a logarithmic term in the variance arises from

amplification by shuffling. We have removed this term by the neg-

ative binomial mechanism. Multi-round protocols have also been

studied under local DP [16–18], and often achieve better utility. For

example, the very recent two-round local DP protocol [16] achieves

a variance of 𝑂 (𝑛𝑑3) for triangle counting, which is better than

our result when 𝑑 = 𝑜 (
√
𝑛). However, multi-round protocols incur

larger latency, higher communication costs, and are more compli-

cated to implement (e.g., they require synchronization among the

users). Besides, [25] assumes that the graphs satisfy a certain struc-

ture; thus, it only performs well for certain types of graphs. [24]

and [29] instead count subgraphs based on the assumption that

each user has an extended view, e.g., their 2-hop neighbors, which

requires the stronger assumption that neighbors are trusted.

So far, all works under local and shuffle DP on graph problems

adopt the edge-DP policy, i.e., the presence of any edge cannot be

learned by the adversary. In central-DP, a stronger policy has also

been studied, known as node-DP, which protects the presence of

any node and all its incident edges [2, 6, 7, 22]. It is an interesting

open problem if this stronger DP policy can be supported in local

or shuffle DP.

Finally, it is worth pointing out that we work with the standard

DP definition, which provides information-theoretical privacy guar-

antees, i.e., the adversary is allowed to have unlimited computing

power. By weakening the guarantee to a computational one and

combining with secure multi-party computation (MPC) techniques,

it is possible to further reduce the variance of triangle counting

at the expense of higher computational costs and more rounds of

communication [23].

2 Preliminaries
Let [𝑛] := {1, 2, . . . , 𝑛}. Suppose there are 𝑛 users𝑈 = {𝑢1, . . . , 𝑢𝑛},
where user 𝑢𝑖 holds data 𝑥𝑖 ∈ X for 𝑖 ∈ [𝑛], and they collectively

constitute the instance 𝐼 = {𝑥𝑖 }𝑖∈[𝑛] . We use 𝐼 ∼ 𝐼 ′ to denote that

the instances 𝐼 and 𝐼 ′ are neighbors, which shall be defined more

precisely later. The distance between 𝐼 and 𝐼 ′, denoted by dist(𝐼 , 𝐼 ′),
is the length of the shortest sequence (𝐼0 = 𝐼 , 𝐼1, . . . , 𝐼𝑘 = 𝐼 ′) such
that 𝐼𝑖−1 ∼ 𝐼𝑖 for all 𝑖 ∈ [𝑘].
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Figure 1: Asymptotic variance bounds of subgraph counting protocols under shuffle DP and local DP as 𝑑 varies.

Given an output rangeZ, let P(Z) denote the set of probability
distributions over Z. For any distribution P, we write 𝑧 ∼ P to

denote a random variable 𝑧 that is distributed as P. A mechanism

M : X𝑛 → P(Z) maps each instance 𝐼 ∈ X𝑛 to the distribution

M(𝐼 ), and outputs a random variable 𝑧 ∼ M(𝐼 ).

Definition 2.1 (Differential Privacy (DP) [10]). A mechanismM :

X𝑛 → P(Z) satisfies (𝜀, 𝛿)-DP if for any neighboring instances

𝐼 ∼ 𝐼 ′ and any measurable subset 𝑍 ⊆ Z,∫
𝑍

M(𝐼 ) (𝑧)𝑑𝑧 ≤ 𝑒𝜀 ·
∫
𝑍

M(𝐼 ′) (𝑧)𝑑𝑧 + 𝛿.

We call 𝜀 the privacy budget. Moreover, 𝛿 should be negligibly

small for the mechanism to protect privacy. When 𝛿 = 0, we say

that the mechanismM satisfies pure 𝜀-DP.

Lemma 2.2 (The Basic Composition Theorem [10]). Given (𝜀, 𝛿)-

DP mechanismsM1, ...,M𝑚 , if for any neighboring instance 𝐼 ∼ 𝐼 ′,
there exists at most 𝑘 mechanismsM𝑖 such thatM𝑖 (𝐼 ) ≠M𝑖 (𝐼 ′),
then the mechanismM = (M1, ...,M𝑚) satisfies (𝑘𝜀, 𝑘𝛿)-DP.

Lemma 2.3 (The Advanced Composition Theorem [10]). Given

(𝜀, 𝛿)-DP mechanismsM1, ...,M𝑚 and some 𝛿0, if for any neigh-

boring instance 𝐼 ∼ 𝐼 ′, there exists at most 𝑘 mechanismsM𝑖 such

thatM𝑖 (𝐼 ) ≠ M𝑖 (𝐼 ′), then the mechanismM = (M1, ...,M𝑚)
satisfies (𝜀′, 𝑘𝛿 + 𝛿0)-DP for

𝜀′ =

√︂
2𝑘 ln( 1

𝛿0

)𝜀 + 𝑘𝜀 (𝑒𝜀 − 1).

Lemma 2.4 (Post Processing [10]). Given a (probably randomized)

function 𝑓 , ifM satisfies (𝜀, 𝛿)-DP, then 𝑓 ◦M also satisfies (𝜀, 𝛿)-
DP.

Lemma 2.5 (Group Privacy [10]). Given an (𝜀, 𝛿)-DP mechanism

M, for any instances 𝐼 and 𝐼 ′ such that dist(𝐼 , 𝐼 ′) ≤ 𝑘 and any

measurable subset 𝑍 ⊆ Z,∫
𝑍

M(𝐼 ) (𝑧)𝑑𝑧 ≤ 𝑒𝑘𝜀 ·
∫
𝑍

M(𝐼 ′) (𝑧)𝑑𝑧 + 𝑘𝑒𝑘𝜀𝛿.

2.1 Central DP, Local DP and Shuffle DP
There are three common DP models: central DP [10], local DP [21],

and shuffle DP [30]. The mechanismM in the central DP model can

be an arbitrary function from X𝑛 to P(Z), modeling the scenario

where a trusted data curator runsM on the entire instance 𝐼 . In

the local DP and shuffle DP model, each user 𝑢𝑖 ∈ 𝑈 runs a local

randomizer R : X → P(Y) on their own data 𝑥𝑖 and sends R(𝑥𝑖 )
to the untrusted data analyst. More formally, the mechanismM in

the local DP model must take the form

M(𝐼 ) := (R(𝑥1), . . . ,R(𝑥𝑛)),

and the joint probability distribution of the 𝑛 local randomizers

should satisfy Definition 2.1. The mechanism in the shuffle DP

model contains an additional shuffler S and

M(𝐼 ) := S(R(𝑥1), . . . ,R(𝑥𝑛)) .

Here, the shuffler S performs a random shuffle of all the mes-

sages before passing them to the analyst, preventing the analyst

from identifying the sender of each message. According to the

post-processing property, if the local randomizers satisfy DP, then

shuffling their outputs still satisfies DP, so any local-DP protocol is

also a shuffle-DP protocol. Besides, in the local DP and shuffle DP

model, the analyst often runs another function A to compute the

final result A(M(𝐼 )).

2.2 DP in Graphs
While different DP models define the architectural roles by specify-

ing what the analyst and users can observe, it remains to specify the

neighboring relationship, i.e., what constitutes the sensitive infor-

mation to be protected, which is specified by DP policies. For graph
data, the most common DP policies are edge-DP and node-DP.

For graph problems, an instance 𝐼 is an undirected graph 𝐼 =

(𝑈 = 𝑉 , 𝐸) on the 𝑛 users (nodes), where the data held by 𝑢𝑖 is their

adjacency vector, i.e., a bit vector 𝑥𝑖 such that 𝑥𝑖, 𝑗 = 1 if there is an

edge between 𝑢𝑖 and 𝑢 𝑗 , and 𝑥𝑖, 𝑗 = 0 otherwise. Moreover, we use

𝑑𝑖 to denote the degree of node 𝑢𝑖 , and assume that 𝑑𝑖 ≤ 𝑑 , where

𝑑 is a given degree upper bound.

In this paper we focus on edge-DP, as with all prior work in the

local and shuffle DP model. Under edge-DP, two instances 𝐼 and 𝐼 ′

are neighbors if they differ by one edge. More precisely, 𝐼 = (𝑈 , 𝐸)
and 𝐼 ′ = (𝑈 , 𝐸′) are on the same set of users, while there exist

𝑖∗, 𝑗∗ ∈ [𝑛] such that

(𝐸 \ 𝐸′) ∪ (𝐸′ \ 𝐸) = {{𝑢𝑖∗ , 𝑢 𝑗∗ }}.

Note that this means the adjacency vectors of 𝐼 and 𝐼 ′ differ by
exactly two bits.

Consequently, the edge local DP model [12] combines the local

DP model with the edge DP policy:
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Definition 2.6 (Edge Local DP). Let R : {0, 1}𝑛 → Y be a local

randomizer, and let

M(𝐼 ) = (R(𝑥1), . . . ,R(𝑥𝑛))
on a graph instance 𝐼 with adjacency vectors 𝑥𝑖 , 𝑖 ∈ [𝑛]. The mech-

anismM satisfies (𝜖, 𝛿)-edge local DP if for any neighboring in-

stances 𝐼 and 𝐼 ′ that differ by one edge, and any measurable subset

𝑍 ⊆ Z, the following inequality holds:∫
𝑍

M(𝐼 ) (𝑧)𝑑𝑧 ≤ 𝑒𝜀 ·
∫
𝑍

M(𝐼 ′) (𝑧)𝑑𝑧 + 𝛿.

The edge local DP model in [17, 18] instead defines neighboring

instances as adjacency matrices differing by one bit, and Defini-

tion 2.6 aligns with "relationship DP" in [17, 18]. These definitions

differ by a factor of 2 in distance. By group privacy, any mecha-

nism satisfying (𝜀, 𝛿)-DP under edge local DP in [17, 18] satisfies

(2𝜀, 2𝑒𝜀𝛿)-DP under Definition 2.6.

Similarly, edge shuffle DP [19] combines the shuffle DP model

with the same edge DP policy:

Definition 2.7 (Edge Shuffle DP). Let R : {0, 1}𝑛 → Y be a local

randomizer, and let

M(𝐼 ) = (R(𝑥1), . . . ,R(𝑥𝑛))
on a graph instance 𝐼 with adjacency vectors 𝑥𝑖 , 𝑖 ∈ [𝑛]. The mech-

anism M satisfies (𝜖, 𝛿)-edge shuffle DP if for any neighboring

instances 𝐼 and 𝐼 ′ that differ by one edge, and any measurable

subset 𝑍 ⊆ Z, the following inequality holds:∫
𝑍

M(𝐼 ) (𝑧)𝑑𝑧 ≤ 𝑒𝜀 ·
∫
𝑍

M(𝐼 ′) (𝑧)𝑑𝑧 + 𝛿.

2.3 DP Mechanisms
In this work, we use Ber(𝑞) to denote the Bernoulli distribution

with success probability 𝑞, and DLap(𝑏) to denote the discrete

Laplace distribution with scale 𝑏.2 Given a discrete Laplace distri-

bution DLap(𝑏), the variance is Var[DLap(𝑏)] = 𝑂 (𝑏2), and with

probability at least 1 − 𝛽 ,

|DLap(𝑏) | ≤ 𝑏 ln

(
1

𝛽

)
.

The first local randomizer is the discrete Laplace mechanism

RDL [4]. Given a function 𝑓 : X → Y, let
GS𝑓 = max

𝐼∼𝐼 ′
max

𝑖∈[𝑛]
|𝑓 (𝑥𝑖 ) − 𝑓 (𝑥 ′𝑖 ) |

denote the global sensitivity of the function 𝑓 , the discrete Laplace

mechanism aims to estimate 𝑓 (𝑥) under local DP. The local ran-
domizer is shown in Algorithm 1, and the analyzer ADL computes

˜𝑓 (𝑥) = 𝑦 as a private estimate of 𝑓 (𝑥).
Lemma 2.8. For any function 𝑓 , the mechanism RDL satisfies pure

2𝜀-edge local DP. Besides, if for every pair of neighboring instances

𝐼 ∼ 𝐼 ′, the function 𝑓 has the property that at most one 𝑖∗ satisfies
𝑓 (𝑥𝑖∗ ) ≠ 𝑓 (𝑥 ′

𝑖∗ ), then RDL satisfies pure 𝜀-local DP. For any data

𝑥 ∈ X, ˜𝑓 (𝑥) is unbiased and has a variance of 𝑂 (
GS

2

𝑓

𝜀2
).

2
The probability density functions of the discrete Laplace distribution is

𝑒
1

𝑏 −1

𝑒
1

𝑏 +1
𝑒
− |𝑥 |

𝑏 .

Algorithm 1: The Local Randomizer RDL

Input :The data 𝑥 ∈ X, the function 𝑓 : X → Y, the
global sensitivity GS𝑓 , the privacy budget 𝜀

1 send the message 𝑦 = 𝑓 (𝑥) + DLap( GS𝑓

𝜀 );

It is noted that we analyze two distinct DP guarantees: a general

privacy guarantee applicable to arbitrary functions under edge DP,

and a tighter privacy guarantee achievable only in the special case

where the computed function 𝑓 (𝑥𝑖 ) differs in only one 𝑖 , which

enables enhanced privacy. Both guarantees will be formally es-

tablished for all DP mechanisms in this subsection and leveraged

accordingly in the subsequent sections.

The second local randomizer is Warner’s randomized response

RRR [31]. Given a function 𝑓 : X → {0, 1}, Warner’s randomized

response aims to estimate 𝑓 (𝑥) under local DP. The local random-

izer RRR is shown in Algorithm 2 and the analyzer ARR finally

computes

˜𝑓 (𝑥) = 𝑦 · (𝑒𝜀 + 1) − 1

𝑒𝜀 − 1

.

Algorithm 2: The Local Randomizer RRR

Input :The data 𝑥 ∈ X, the function 𝑓 : X → {0, 1}, the
privacy budget 𝜀

1 sample 𝑧 ∼ Ber( 𝑒𝜀

𝑒𝜀+1 );
2 if 𝑧 = 1 then send the message 𝑦 = 𝑓 (𝑥) ;
3 else send the message 𝑦 = 1 − 𝑓 (𝑥) ;

Lemma 2.9. For any function 𝑓 , the mechanism RRR satisfies pure

2𝜀-edge local DP. Besides, if for every pair of neighboring instances

𝐼 ∼ 𝐼 ′, the function 𝑓 has the property that at most one 𝑖∗ satisfies
𝑓 (𝑥𝑖∗ ) ≠ 𝑓 (𝑥 ′

𝑖∗ ), then RRR satisfies pure 𝜀-local DP. For any data

𝑥 ∈ X, ˜𝑓 (𝑥) is unbiased and has a variance of
𝑒𝜀

(𝑒𝜀−1)2 = 𝑂 ( 1

𝜀2
).

The last local randomizer is the negative binomial mechanism

RNB [15]. Given a function 𝑓 : X → {0} ∪ [Δ] for some positive

integer Δ, the mechanism aims to estimate the sum

𝑓 (𝐼 ) =
∑︁
𝑖∈[𝑛]

𝑓 (𝑥𝑖 )

under shuffle DP. The general framework of the local randomizer

RNB is shown in Algorithm 3. Let 𝑌 denote the multiset of all

messages sent by the users (after shuffling), the analyzerANB then

computes

˜𝑓 (𝐼 ) =
∑︁
𝑦∈𝑌

𝑦

as a private estimate of the sum 𝑓 (𝐼 ).
We see that the negative binomial mechanism sends three types

of messages. First, the message 𝑓 (𝑥) is sent directly in Line 2. Sec-

ond, a series of messages of 1 or −1 are sent in Line 5. The numbers

of such messages are drawn from a distribution Pcent
, which shall

be specified later, such that

∑
𝑖∈[𝑛]

(
𝑧
(𝑖 )
+1 − 𝑧

(𝑖 )
−1

)
follows DLap( Δ𝜀 ),

thereby obscuring the total sum. Finally, a series of messages are

sent in Line 9, where each message takes a value 𝑡 ∈ [−Δ,Δ]. The
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Algorithm 3: The Local Randomizer RNB

1 Input :The data 𝑥 ∈ X, the function 𝑓 : X → {0} ∪ [Δ],
the number of user 𝑛, the parameter Δ, the privacy
budget 𝜀 and 𝛿

2 if 𝑓 (𝑥) ≠ 0 then send a message 𝑓 (𝑥) ;
3 compute the collection of sets T and distributions Pcent

and {P𝑇 }𝑇 ∈T using 𝜀, 𝛿 , Δ and 𝑛;

4 sample 𝑧+1 ∼ Pcent
, 𝑧−1 ∼ Pcent

;

5 send 𝑧+1 messages, where each message is 1, and send 𝑧−1

messages, where each message is −1;

6 for 𝑇 ∈ T do
7 sample 𝑧𝑇 ∼ P𝑇 ;
8 for 𝑡 ∈ 𝑇, 𝑡 ≠ 0 do
9 send 𝑧𝑇 messages, where each message is 𝑡 ;

10 end
11 end

numbers of such messages are drawn from a collection of distribu-

tions P𝑇 ,𝑇 ∈ T , which will also be specified later. These messages

mask the difference in the count of messages for each value in

[−Δ,Δ], while ensuring that for any 𝑇 ∈ T , ∑𝑡 ∈𝑇 𝑡 = 0. Combin-

ing these, we can demonstrate that the sum of all the messages

follows

˜𝑓 (𝐼 ) = 𝑓 (𝐼 ) + DLap(Δ
𝜀
) .

It is important to emphasize that users do not add direct noise to

𝑓 (𝑥). Instead, they send additional messages with varying values

to conceal both the total sum and the count of messages for each

distinct value, thereby achieving differential privacy. In the follow-

ing, we present only the results. Interested readers can refer to [15]

for the proofs.

Lemma 2.10 ( [15]). For any given privacy budget 𝜀 < 4, if for

every pair of neighboring instances 𝐼 ∼ 𝐼 ′, the function 𝑓 has the

property that at most one node 𝑣𝑖∗ satisfies 𝑓 (𝑥𝑖∗ ) ≠ 𝑓 (𝑥 ′
𝑖∗ ), then

the local randomizer RNB satisfies (𝜀, 𝛿)-shuffle DP. Moreover, for

any given privacy budget 𝜀 < 4 and any function 𝑓 , RNB satisfies

(2𝜀, 2𝑒2𝜀𝛿)-edge shuffle DP according to the group privacy property.

For any instance 𝐼 ∈ I, ˜𝑓 (𝐼 ) is unbiased and has a variance of

Var[DLap( Δ𝜀 )] = 𝑂 ( Δ2

𝜀2
). The communication cost is 𝑂̃ (I[𝑓 (𝑥𝑖 ) ≠

0] + Δ
𝑛𝜀 ) bits for user 𝑢𝑖 in expectation.

3

Finally, we describe the distributions used in the negative bi-

nomial mechanism. Let NB(𝑟, 𝑝) denote the negative binomial dis-

tribution (extended to real 𝑟 > 0 via the gamma function) with

number of successes 𝑟 and success probability 𝑝 . Moreover, let

NB/𝑛 (𝑟, 𝑝) := NB(𝑟/𝑛, 𝑝), so that∑︁
𝑖∈[𝑛]

NB/𝑛 (𝑟, 𝑝) = NB(𝑟, 𝑝) .

We will only describe the distributions for the case Δ = 1, which

is the case used in this work; the general case Δ > 1 is more

3
The parameter 𝛿 appears only in logarithmic factors of the communication cost and

is therefore hidden in the 𝑂̃ ( ·) notation.

complicated and interested readers are referred to [15] for details.

Given privacy parameters 𝜀 and 𝛿 , we set 𝜀1 = 3𝜀
4
, 𝜀2 = 𝜀

20
, and have

T = {{+1,−1}},

Pcent = NB/𝑛 (1, 1 − 𝑒−𝜀1 ),

P {+1,−1} = NB/𝑛 (3(1 + log( 1
𝛿
)), 1 − 𝑒−𝜀2 ) .

It is noted that

NB(1, 1 − 𝑒−𝜀1 ) − NB(1, 1 − 𝑒−𝜀1 ) = DLap

(
1

𝜀1

)
,

thus, we can conclude that a sequence of messages sampled from

Pcent
collectively generates the discrete Laplace noise DLap(1/𝜀1)

to obscure the total sum, while messages sampled from P+1,−1

mask counts and correlations between +1 and −1 messages.

Table 2: Summary of notations

𝜀, 𝛿 privacy parameters in (𝜀, 𝛿)-DP
𝑈 , 𝑢𝑖 , 𝑛 𝑈 : user set; 𝑢𝑖 : 𝑖-th user in𝑈 ; 𝑛: number of users

X, 𝑥𝑖 X: universe of data; 𝑥𝑖 : 𝑢𝑖 ’s data

X𝑛 , 𝐼 = (𝑈 = 𝑉 , 𝐸) X𝑛 : universe of instances, 𝐼 : instance in X𝑛 , an
undirected graph with set of nodes𝑈 = 𝑉 and set of edges 𝐸

𝑉 , 𝑉 , 𝑣𝑖 𝑉 : set of nodes; 𝑉 : subset of nodes; 𝑣𝑖 : 𝑖-th node in 𝑉

𝑑 , 𝑑𝑖 𝑑 : given degree upper bound; 𝑑𝑖 : degree of 𝑣𝑖

𝑌 , 𝑦 𝑌 : multiset of messages; 𝑦: a message

Z, 𝑧, P(Z) Z: output range of the mechanisms; 𝑧: an output;

P(Z): set of probability distributions overZ

M, R, S, A M: mechanism; R: local randomizer;

S: shuffler; A: analyzer

Q, 𝑞 Q: sampling procedure; 𝑞: sampling probability

𝑓 , 𝑓I, 𝑓deg
, 𝑓𝑗 , 𝑓𝑇,𝑘

𝑓 : generic function; 𝑓I: identity function;

𝑓
deg

: degree function; 𝑓𝑗 : bit-extraction function;

𝑓𝑇,𝑘 : 𝑘-star counting function

𝐶△ , 𝐶□, 𝐶⊔, etc. count of triangles, 4-cycles, 3-hop paths, etc.

Δ parameter in the negative binomial mechanism

2.4 Notation
Table 2 summarizes key symbols used throughout this work. More-

over, in the following sections, there will be a slight notational

shift: when describing a graph instance 𝐼 = (𝑈 , 𝐸) in Section 2.2,

we simply set 𝑈 = 𝑉 , treating the set of users as equivalent to the

set of nodes, thus, we may refer to “𝑣𝑖 holding its data 𝑥𝑖 ”, meaning

that node 𝑣𝑖 holds the adjacency vector 𝑥𝑖 , instead of using the user

𝑢𝑖 representation.

Throughout the following sections, we use 𝑖 and 𝑗 as indices

iterating over nodes, 𝑘 for the star size in 𝑘-star counting,𝑚 < 𝑛 as

the number of groups to be analyzed (formally defined in Section

4.1.3), and ℓ as an index iterating over groups.

3 Main Building Blocks
In this section, we introduce the main building blocks of our mech-

anism. For completeness, we first review the local randomizers

that estimate each node’s degree and adjacency list. Following this,

we introduce our new mechanism that estimates the frequency of

specific 𝑘-stars in the graph.
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3.1 Node Degree Estimation
Let 𝑓

deg
denote the function that computes the node degree, i.e.,

𝑓
deg
(𝑥𝑖 ) = 𝑑𝑖 =

∑︁
𝑗∈[𝑛],𝑖≠𝑗

𝑥𝑖, 𝑗 .

The first local randomizerR
deg

, as shown inAlgorithm 4, obfuscates

node degrees by invoking the discrete Laplace mechanism. For any

node 𝑣𝑖 ∈ 𝑉 , the analyzer finally computes
˜𝑑𝑖 = 𝑦𝑖 .

Algorithm 4: The Local Randomizer R
deg

Input :The data 𝑥𝑖 ∈ X and the privacy budget 𝜀

1 invoke the local randomizer 𝑦𝑖 = RDL (𝑥𝑖 , 𝑓deg
, 1, 𝜀

2
);

Lemma 3.1. For any given privacy budget 𝜀, the local randomizer

R
deg

satisfies 𝜀-edge local DP. For any node 𝑣𝑖 ∈ 𝑉 ,

E[ ˜𝑑𝑖 ] = 𝑑𝑖 , Var[ ˜𝑑𝑖 ] = 𝑂

(
1

𝜀2

)
.

Proof. Consider any neighboring instances 𝐼 ∼ 𝐼 ′ that differ
by the edge (𝑣𝑖∗ , 𝑣 𝑗∗ ). In this case, the degrees of nodes 𝑣𝑖∗ and 𝑣 𝑗∗

differ by at most 1. The proof then follows the basic composition

theorem and Lemma 2.8. □

3.2 Adjacent Matrix Estimation
Given the data 𝑥𝑖 ∈ X = {0, 1}𝑛 , for any 𝑗 ∈ [𝑛], let 𝑓𝑗 : X → {0, 1}
be the function that returns the 𝑗-th bit of 𝑥𝑖 , i.e.,

𝑓𝑗 (𝑥𝑖 ) = 𝑥𝑖, 𝑗 .

The local randomizerR
adj

, as shown inAlgorithm 5, then obfuscates

the adjacent matrix by invoking Warner’s Randomized Response.

For any pair of nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 < 𝑗 , the analyzer A
adj

computes

𝑥𝑖, 𝑗 =
𝑦𝑖, 𝑗 · (𝑒𝜀 + 1) − 1

𝑒𝜀 − 1

.

Here, only the upper triangle of the adjacency matrix is obfuscated,

and the lower part can be reconstructed using symmetry.

Algorithm 5: The Local Randomizer R
adj

Input :The data 𝑥𝑖 ∈ X and the privacy budget 𝜀

1 for 𝑗 ∈ [𝑛], 𝑗 > 𝑖 do
2 invoke the local randomizer 𝑦𝑖, 𝑗 = RRR (𝑥𝑖 , 𝑓𝑗 , 𝜀);
3 end

Lemma 3.2. For any given privacy budget 𝜀, the local randomizer

R
adj

satisfies 𝜀-edge local DP. For any pair of nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 < 𝑗 ,

E[𝑥𝑖, 𝑗 ] = 𝑥𝑖, 𝑗 , Var[𝑥𝑖, 𝑗 ] = 𝑂

(
1

𝜀2

)
.

The communication cost is 𝑂 (𝑛) bits.

Proof. Consider any neighboring instances 𝐼 ∼ 𝐼 ′ that differ by
the edge (𝑣𝑖∗ , 𝑣 𝑗∗ ) such that 𝑖∗ < 𝑗∗. In this case, only the output

distribution of RRR (𝑥𝑖∗ , 𝑓𝑗∗ , 𝜀) changes. The proof then follows the

basic composition theorem and Lemma 2.9. □

The local DP triangle counting mechanism in [12] directly uti-

lizes R
adj

. The following summarizes the result. For additional

details, please refer to [12].

Theorem 3.3. Assume 𝜀 = Θ(1), there exists an 𝜀-local DP trian-

gle counting mechanism that obtains an unbiased estimate with a

variance of 𝑂 (𝑛3 + 𝑛𝑑3), while the analysis time is 𝑂 (𝑛3).

3.3 𝑘-star Frequency Estimation
The last local randomizer is our key building block. To begin with,

we first define the 𝑘-stars in a graph as follows: Given an undirected

graph instance 𝐼 = (𝑉 , 𝐸), a 𝑘-star is a subgraph consisting of a

central node 𝑣0 ∈ 𝑉 and a set of𝑘 distinct nodes 𝑣1, . . . , 𝑣𝑘 ⊆ 𝑉 \{𝑣0}
such that

{(𝑣0, 𝑣𝑖 ) |𝑖 ∈ [𝑘]} ⊆ 𝐸,

i.e., there is an edge between 𝑣0 and each node 𝑣𝑖 for 𝑖 ∈ [𝑘]. Notably,
when 𝑘 = 1, this reduces to a single edge, and when 𝑘 = 2, it forms

a wedge.

3.3.1 Mechanism. Estimating the frequency of specific 𝑘-stars is

exactly a sum estimation problem. In this section, we integrate the

state-of-the-art negative binomial mechanism with sampling to

develop a new sampling-based approach for counting 𝑘-stars with

different nodes serving as the leaves.

Given a subset of nodes𝑇 ⊆ 𝑉 and some positive integer 𝑘 ≥ |𝑇 |,
for any node 𝑣𝑖 ∈ 𝑉 , recall that 𝑑𝑖 is the node degree of 𝑣𝑖 , we then

formally define

𝑓𝑇,𝑘 (𝑥𝑖 ) =
∏
𝑣𝑗 ∈𝑇

𝑥𝑖, 𝑗 ·
(
𝑑𝑖 − |𝑇 |
𝑘 − |𝑇 |

)
if 𝑣𝑖 ∉ 𝑇 , and 𝑓𝑇,𝑘 (𝑥𝑖 ) = 0 otherwise.

4
If 𝑣𝑖 ∉ 𝑇 , then the product∏

𝑣𝑗 ∈𝑇 𝑥𝑖, 𝑗 , which is a 0/1 bit, indicates whether 𝑣𝑖 is connected to

all nodes in 𝑇 . If it is, then there may exist 𝑘-stars with 𝑣𝑖 being

the central node and all the nodes in 𝑇 being (part of) the leaves,

and the number of such 𝑘-stars corresponds to the combinations

of 𝑘 − |𝑇 | edges that can be chosen from the remaining 𝑑𝑖 − |𝑇 |
edges. Otherwise, when 𝑣𝑖 ∈ 𝑇 , there cannot exist any 𝑘-star with
𝑣𝑖 being the central node. Therefore, 𝑓𝑇,𝑘 (𝑥𝑖 ) is exactly the number

of 𝑘-stars with 𝑣𝑖 being the central node and all the nodes in 𝑇

being (part of) the leaves. Finally, the number of 𝑘-stars with all

the nodes in 𝑇 being (part of) the leaves can be represented as

𝑓𝑇,𝑘 (𝐼 ) =
∑︁
𝑖∈[𝑛]

𝑓𝑇,𝑘 (𝑥𝑖 ) .

Example 3.1. Consider the graph instance 𝐼 that consists of a

5-hop path 𝑣1 −𝑣2 −𝑣3 −𝑣4 −𝑣5. Given𝑇 = {𝑣3} and 𝑘 = 2, then the

function 𝑓𝑇,𝑘 (𝑥𝑖 ) counts the number of 2-stars with 𝑣𝑖 being the

central node and 𝑣3 being one of the leaves. The function values

for each node are computed as follows:

𝑓𝑇,𝑘 (𝑥2) = 𝑓𝑇,𝑘 (𝑥4) = 1, 𝑓𝑇,𝑘 (𝑥1) = 𝑓𝑇,𝑘 (𝑥3) = 𝑓𝑇,𝑘 (𝑥5) = 0,

Specifically, 𝑓𝑇,𝑘 (𝑥2) = 1 as there are a 2-star centered at 𝑣2 with

𝑣3 as a leaf: 𝑣1 − 𝑣2 − 𝑣3. Similarly, 𝑓𝑇,𝑘 (𝑥4) = 1 corresponds to

the 2-star 𝑣3 − 𝑣4 − 𝑣5. Summing over all nodes yields 𝑓𝑇,𝑘 (𝐼 ) = 2,

indicating that there are two 2-stars in instance 𝐼 with 𝑣3 being one

of the leaves.

4
We define

(𝑎
𝑏

)
= 0 for any 𝑎 < 𝑏.
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Our local randomizer Rstar, which obfuscates 𝑓𝑇,𝑘 (𝐼 ) under shuf-
fle DP, is shown in Algorithm 6, where 𝑓I is the identity function.

More specifically, the mechanism works as follows: Each node 𝑣𝑖
first computes 𝑓𝑇,𝑘 (𝑥𝑖 ), samples it with probability 𝑞, and then in-

vokes the negative binomial mechanism. Let 𝑌 denote the multiset

of all messages sent by the users (after shuffling), the analyzerAstar

then computes
˜𝑓𝑇,𝑘 (𝐼 ) = 1

𝑞 ·
∑

𝑦∈𝑌 𝑦.

Algorithm 6: The Local Randomizer Rstar

Input :The data 𝑥𝑖 ∈ X, the function 𝑓𝑇,𝑘 , the number of

node 𝑛, the sampling probability 𝑞, the privacy

budget 𝜀 and 𝛿

1 𝜀𝑞 ← ln(1 + 1

𝑞 · (𝑒
𝜀 − 1)), 𝛿𝑞 ← 1

𝑞 · 𝛿 , Δ←
(𝑑−|𝑇 |
𝑘−|𝑇 |

)
;

2 compute 𝑓𝑇,𝑘 (𝑥𝑖 );
3 sample 𝑧𝑖 ∼ Ber(𝑞) and invoke the local randomizer

RNB (𝑧𝑖 · 𝑓𝑇,𝑘 (𝑥𝑖 ), 𝑓I, 𝑛,Δ, 𝜀𝑞, 𝛿𝑞);

3.3.2 Analysis. To analyze the privacy guarantees of Rstar, we

first establish the framework of privacy amplification by sampling.

Consider a data universe X = N where datasets 𝐼 , 𝐼 ′ ∈ N𝑛 are

neighbors if they differ in exactly one data point. Let Q : N𝑛 → N𝑛
denote the Poisson sampling procedure where each user’s data is

sampled independently with probability 𝑞, i.e., for each user 𝑢𝑖 ,

Q(𝑥𝑖 ) =
{
𝑥𝑖 with probability 𝑞

0 otherwise

The privacy amplification result looks as follows.
5

Lemma 3.4 (Privacy Amplification by Sampling [1]). Given an

(𝜀′, 𝛿 ′)-DP mechanismM : N𝑛 → P(Z), the mechanismM ◦ Q :

N𝑛 → P(Z) satisfies (𝜀, 𝛿)-DP for

𝜀 = ln(1 + 𝑞 · (𝑒𝜀
′
− 1)), 𝛿 = 𝑞𝛿 ′ .

Especially when 𝜀′ < 𝑂 (1), we have 𝜀 = Θ(𝑞𝜀′).

Applying this to the negative binomial mechanism then yields:

Lemma 3.5. For any given privacy budget 𝜀 and sampling probabil-

ity𝑞 such that 𝜀𝑞 < 4, the local randomizerRstar satisfies (2𝜀, 2𝑒2𝜀𝛿)-
shuffle DP. Especially when 𝑘 = |𝑇 |, the local randomzier Rstar

satisfies (𝜀, 𝛿)-shuffle DP.

Proof. We first consider the simple case where 𝑘 = |𝑇 |. For any
neighboring instances 𝐼 ∼ 𝐼 ′ under edge DP, at most one 𝑓𝑇,𝑘 (𝑥𝑖 )
differs. Therefore, according to Lemma 3.4, the local randomizer

Rstar satisfies (𝜀, 𝛿)-shuffle DP. Instead, when 𝑘 > |𝑇 |, then at most

two 𝑓𝑇,𝑘 (𝑥𝑖 )’s differs, and the proof follows Lemma 3.4 and the

group privacy property. □

Lemma 3.6. For any given privacy budget 𝜀 such that 𝜀𝑞 < 𝑂 (1)
and any subset of nodes 𝑇 ⊆ 𝑉 ,

E[ ˜𝑓𝑇,𝑘 (𝐼 )] = 𝑓𝑇,𝑘 (𝐼 ), Var[ ˜𝑓𝑇,𝑘 (𝐼 )] =
1 − 𝑞
𝑞
·
∑︁
𝑖∈[𝑛]

(
𝑓𝑇,𝑘 (𝑥𝑖 )

)
2+𝑂

(
Δ2

𝜀2

)
.

5
Balle et al. [1] states the results specifically for the central DP model. However, we

observe that the framework and the results are also applicable to the local/shuffle DP

model, given that the data not sampled is set to 0.

Proof. The expectation is

E[ ˜𝑓𝑇,𝑘 (𝐼 )] =
1

𝑞
·
(
𝑞 · 𝑓𝑇,𝑘 (𝐼 ) + E

[
DLap

(
Δ

𝜀𝑞

)] )
= 𝑓𝑇,𝑘 (𝐼 ),

and the variance is

Var[ ˜𝑓𝑇,𝑘 (𝐼 )] =
1

𝑞2
·
(
𝑞 · (1 − 𝑞) ·

∑︁
𝑖∈[𝑛]

(
𝑓𝑇,𝑘 (𝑥𝑖 )

)
2 + Var

[
DLap

(
Δ

𝜀𝑞

)] )
=

1 − 𝑞
𝑞
·
∑︁
𝑖∈[𝑛]

(
𝑓𝑇,𝑘 (𝑥𝑖 )

)
2 + 1

𝑞2
· Var

[
DLap

(
Δ

𝜀𝑞

)]
The proof follows that Var[DLap(𝑏)] = 𝑂 (𝑏2) and 𝜀 = Θ(𝑞𝜀𝑞)
when 𝜀𝑞 < 𝑂 (1). □

Lemma 3.7. For any given privacy budget 𝜀 such that 𝜀𝑞 < 𝑂 (1)
and any subset of nodes 𝑇 ⊆ 𝑉 , the communication cost is 𝑂̃ (𝑞 ·
I[𝑓𝑇,𝑘 (𝑥𝑖 ) ≠ 0] + 𝑞 · Δ

𝑛𝜀 ) bits for node 𝑣𝑖 in expectation.

Proof. The proof follows Lemma 2.10 and 𝜀 = Θ(𝑞𝜀𝑞) when
𝜀𝑞 < 𝑂 (1). □

Example 3.2. Consider the case where 𝑇 = {𝑣1, 𝑣2} and 𝑘 = 2,

then the mechanism counts the number of 2-stars in the whole

graph such that 𝑣1 and 𝑣2 are the leaves. We can compute Δ = 1,

i.e., 𝑓𝑇,𝑘 (𝑥𝑖 ) is either 0 or 1 for any 𝑖 ∈ [𝑛]. Thus,∑︁
𝑖∈[𝑛]

(
𝑓𝑇,𝑘 (𝑥𝑖 )

)
2

=
∑︁
𝑖∈[𝑛]

𝑓𝑇,𝑘 (𝑥𝑖 ) = 𝑓𝑇,𝑘 (𝐼 ) .

Then we have

E[ ˜𝑓𝑇,𝑘 (𝐼 )] = 𝑓𝑇,𝑘 (𝐼 ), Var[ ˜𝑓𝑇,𝑘 (𝐼 )] =
1 − 𝑞
𝑞
· 𝑓𝑇,𝑘 (𝐼 ) +𝑂

(
1

𝜀2

)
.

The communication cost is 𝑂̃ (𝑞 · 𝑓𝑇,𝑘 (𝑥𝑖 ) +
𝑞
𝑛𝜀 ) bits for node 𝑣𝑖 in

expectation.

Example 3.3. Consider another case where 𝑇 = {𝑣1} and 𝑘 = 2,

then the mechanism counts the number of 2-stars in the whole

graph such that 𝑣1 is one of the leaves. We can compute Δ = 𝑑 and

set 𝑞 = 1, i.e., there is no sampling, then

E[ ˜𝑓𝑇,𝑘 (𝐼 )] = 𝑓𝑇,𝑘 (𝐼 ), Var[ ˜𝑓𝑇,𝑘 (𝐼 )] = 𝑂

(
𝑑2

𝜀2

)
.

The communication cost is 𝑂̃ (𝑑 + 𝑑
𝑛𝜀 ) bits for each node in expec-

tation.

4 Subgraph Counting
We then present the explicit mechanism for counting various sub-

graphs. In this work, we mainly focus on subgraphs that cannot

be entirely observed by individual nodes: For 𝑘-star counting, a

straightforward shuffle DP mechanism can be designed by com-

bining the 𝑘-star counting mechanism under local DP [17] with

privacy amplification by shuffling.
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4.1 Triangle Counting
In this section, we study the triangle counting problem. Given a

graph instance 𝐼 , we focus on estimating the number of triangles in

𝐼 under shuffle DP. More specifically, we set 𝑘 = 2 and the number

of triangles in 𝐼 is

𝐶△ (𝐼 ) =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
𝑓𝑉 ,2 (𝐼 ) · 𝑥𝑖, 𝑗 .

It is noted that each triangle is counted three times in 𝐶△ (𝐼 ). How-
ever, we can scale down the count during post-processing, which

does not affect privacy.

4.1.1 Mechanism. We first split the privacy budget. Let 𝜀′ = 𝜀
2
,

𝜀′′ = argmax{𝜀 :

√︂
4𝑑 ln( 2

𝛿
)𝜀 + 2𝑑𝜀 (𝑒𝜀 − 1) ≤ 𝜀′},

and 𝛿 ′′ = 𝛿
4𝑑
. The local randomizer R△ looks as follows: Each node

𝑣 first invokes the local randomizer R
adj
(𝑥, 𝜀′) for analyzing the

adjacent matrix. Then for any set of nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 ,
each node 𝑣 invokes the local randomizer Rstar (𝑥, 𝑓𝑉 ,2, 𝑛, 𝑞, 𝜀

′′, 𝛿 ′′)
to count the number of 2-stars such that𝑉 = {𝑣𝑖 , 𝑣 𝑗 } are the leaves,
where 𝑞 is a given sampling probability. The shuffler then shuffles

all the messages, and the analyzer A△ computes

𝐶△ (𝐼 ) =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

˜𝑓𝑉 ,2 (𝐼 ) · 𝑥𝑖, 𝑗 ,

where all the
˜𝑓𝑉 ,2 (𝐼 )’s and 𝑥𝑖, 𝑗 ’s are computed as described in the

building blocks in Section 3.

4.1.2 Analysis.

Theorem 4.1. For any given privacy budget 𝜀, the sampling proba-

bility 𝑞 and the maximum degree 𝑑 such that 𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ −

1)) < 4, the local randomizer R△ satisfies (𝜀, 𝛿)-shuffle DP.

Proof. First, invoking the local randomizer R
adj

satisfies pure

𝜀′-edge local (and thus shuffle) DP. Next, we notice that adding

an edge to the graph instance can change at most 2𝑑 output dis-

tributions across all local randomizers Rstar’s. According to the

composition theorems, invoking all the local randomizers Rstar’s

satisfies (𝜀′, 𝛿)-shuffle DP. Therefore, the local randomizer R△ sat-

isfies (𝜀, 𝛿)-shuffle DP. □

We then state the accuracy and efficiency guarantees, for which

we assume 𝜀 < 2 so that 𝜀′ < 1 and

𝜀′′ = Θ

(
𝜀√︃

𝑑 log( 1

𝛿
)

)
.

Theorem 4.2. For any given privacy budget 𝜀 < 2 and sampling

probability 𝑞 such that 𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ − 1)) < 𝑂 (1), and any

instance 𝐼 ∈ I, we have

E[𝐶△ (𝐼 )] = 𝐶△ (𝐼 ),

and

Var[𝐶△ (𝐼 )] = 𝑂

(
𝑛𝑑3

𝜀2

)
+ 1 − 𝑞

𝑞
·𝑂

(
𝑛𝑑2

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑

𝜀4

)
.

Proof. The expectation is

E[𝐶△ (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
E[ ˜𝑓𝑉 ,2 (𝐼 )] · E[𝑥𝑖, 𝑗 ]

=
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
𝑓𝑉 ,2 (𝐼 ) · 𝑥𝑖, 𝑗

=𝐶△ (𝐼 )
The estimate for any two sets of nodes is independent, thus, the

variance is

Var[𝐶△ (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
Var[ ˜𝑓𝑉 ,2 (𝐼 ) · 𝑥𝑖, 𝑗 ] .

We first note that for any set of nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 ,

[E[𝑥𝑖, 𝑗 ]]2 = (𝑥𝑖, 𝑗 )2 = 𝑥𝑖, 𝑗 .

Combining this with the results from Example 3.2, we can compute

that for any set of nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 ,

Var[ ˜𝑓𝑉 ,2 (𝐼 ) · 𝑥𝑖, 𝑗 ]

=Var[𝑥𝑖, 𝑗 ] · [E[ ˜𝑓𝑉 ,2 (𝐼 )]]
2 +

(
[E[𝑥𝑖, 𝑗 ]]2 + Var[𝑥𝑖, 𝑗 ]

)
· Var[ ˜𝑓𝑉 ,2 (𝐼 )]

=𝑂

(
1

𝜀2

)
·
(
𝑓𝑉 ,2 (𝐼 )

)
2 +

(
𝑥𝑖, 𝑗 +𝑂

(
1

𝜀2

))
·
(

1 − 𝑞
𝑞
· 𝑓𝑉 ,2 (𝐼 ) + 𝑂̃

(
𝑑

𝜀2

))
=𝑂

(
1

𝜀2

)
·
( (
𝑓𝑉 ,2 (𝐼 )

)
2 + 1 − 𝑞

𝑞
· 𝑓𝑉 ,2 (𝐼 ) + 𝑂̃

(
𝑑

𝜀2

))
Moreover, given the maximum degree is upper bounded by 𝑑 , we

have ∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

𝑓𝑉 ,2 (𝐼 ) = 𝑂
(
𝑛𝑑2

)
,∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
(𝑓𝑉 ,2 (𝐼 ))

2 = 𝑂
(
𝑛𝑑3

)
.

Therefore, the overall variance is

Var[𝐶△ (𝐼 )]

=𝑂

(
1

𝜀2

)
·

∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

( (
𝑓𝑉 ,2 (𝐼 )

)
2 + 1 − 𝑞

𝑞
· 𝑓𝑉 ,2 (𝐼 ) + 𝑂̃

(
𝑑

𝜀2

))
=𝑂

(
1

𝜀2

)
·
(
𝑂
(
𝑛𝑑3

)
+ 1 − 𝑞

𝑞
·𝑂

(
𝑛𝑑2

)
+ 𝑂̃

(
𝑛2𝑑

𝜀2

))
=𝑂

(
𝑛𝑑3

𝜀2

)
+ 1 − 𝑞

𝑞
·𝑂

(
𝑛𝑑2

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑

𝜀4

)
□

Theorem 4.3. For any given privacy budget 𝜀 < 2 and sampling

probability 𝑞 such that 𝜀′′𝑞 = ln(1+ 1

𝑞 · (𝑒
𝜀′′−1)) < 𝑂 (1), the commu-

nication cost for each node is 𝑂̃ (𝑞 · 𝑑2 + 𝑞𝑛
√
𝑑

𝜀 ) bits in expectation.

Proof. Consider any node 𝑣 ∈ 𝑉 , 𝑂 (𝑛) bits are sent to analyze

the adjacent matrix. Moreover, for any node 𝑣𝑖 , it is noted that∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

𝑓𝑉 (𝑥𝑖 ) = 𝑂 (𝑑2),

thus, according to Lemma 3.7, 𝑂̃ (𝑞 · 𝑑2 + 𝑞 · 𝑛
√
𝑑

𝜀 ) bits are sent in
expectation for counting the 2-stars. It is noted that each message

requires 𝑂 (log(𝑛)) additional bits to identify the specific set of
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nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 } we are working with, ensuring that the counts
for different𝑘-stars remain distinct during the shuffling process. □

Example 4.1. Consider the case where the constant privacy budget
𝜀 < 2 and the graph is sparse in the sense that 𝑑1.5 ≤ 𝑛. If we set

𝑞 = 1√
𝑑
, then

1 − 𝑞
𝑞
·𝑂

(
𝑛𝑑2

𝜀2

)
= 𝑂

(
𝑛𝑑2.5

𝜀2

)
,

i.e., the sample variance is dominated by other terms. The overall

variance is 𝑂̃ (𝑛𝑑3 + 𝑛2𝑑) and the communication cost is 𝑂̃ (𝑛) bits
per node in expectation. We can see that sampling does not increase

the variance much while saving the communication cost.

4.1.3 Improvement of Communication Cost. Moreover, we can re-

duce the communication cost by estimating the frequency for only

a few 𝑘-stars. More specifically, we divide the sets of nodes into 𝑛

different groups: For ℓ ∈ [𝑛], let

Γℓ = {{𝑣𝑖 , 𝑣 𝑗 } : 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 + 𝑗 ≡ ℓ (mod 𝑛)}

denote the ℓ-th group of the sets of nodes. Let𝑚 be a given param-

eter denoting the number of groups that we need to analyze. We

set
ˇ𝑑 = min(𝑑,𝑚) and split the privacy budget as follows. Let

𝜀bsc =
𝜀′

2
ˇ𝑑
, 𝜀adv = argmax{𝜀 :

√︂
4

ˇ𝑑 ln( 2
𝛿
)𝜀 + 2

ˇ𝑑𝜀 (𝑒𝜀 − 1) ≤ 𝜀′},

and 𝜀′′ = max(𝜀bsc, 𝜀adv). We then set 𝛿 ′′ = 𝛿

2
ˇ𝑑
if 𝜀′′ = 𝜀bsc

and

𝛿 ′′ = 𝛿

4
ˇ𝑑
otherwise. The overall flow of the mechanism is modified

as well. The analyzerA△ first chooses𝑚 random numbers 𝐿 ⊆ [𝑛]
and sends the numbers to each node. Then the local randomizer

R𝑚△ looks as follows: Each node 𝑣 first invokes the local randomizer

R
adj
(𝑥, 𝜀′) for analyzing the adjacent matrix (but only sends the

necessary 𝑦𝑖, 𝑗 ’s for sets of nodes {𝑣𝑖 , 𝑣 𝑗 } ∈ Γℓ , ℓ ∈ 𝐿). Next, for any
set of nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 } ∈ Γℓ , ℓ ∈ 𝐿, each node 𝑣 invokes the local

randomizer Rstar (𝑥, 𝑓𝑉 ,2, 𝑛, 𝑞, 𝜀
′′, 𝛿 ′′). The shuffler shuffles all the

messages and the analyzer A△ computes

𝐶△ (𝐼 ) =
𝑛

𝑚
·
∑︁
ℓ∈𝐿

∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 }∈Γℓ

˜𝑓𝑉 ,2 (𝐼 ) · 𝑥𝑖, 𝑗 .

The privacy guarantee remains the same. Specifically, the local

randomizer R𝑚△ satisfies (𝜀, 𝛿)-shuffle DP as long as 𝜀′′𝑞 = ln(1 + 1

𝑞 ·
(𝑒𝜀′′ − 1)) < 4. Furthermore, the number of noisy messages can be

reduced from 𝑂̃ ( 𝑞𝑛
√
𝑑

𝜀 ) to 𝑂̃ (
𝑞𝑚
√
𝑑

𝜀 ).

4.2 4-cycle Counting
Our triangle-counting mechanism can be easily extended to count

4-cycles. More specifically, we set 𝑘 = 2 and the number of 4-cycles

in 𝐼 is

𝐶□ (𝐼 ) =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
𝑓𝑉 ,2 (𝐼 ) ·

(
𝑓𝑉 ,2 (𝐼 ) − 1

)
.

Each 4-cycle is counted four times in 𝐶□ (𝐼 ) and we can also scale

the count down during post-processing.

4.2.1 Mechanism. The privacy budgets 𝜀′′ and 𝛿 ′′ are the same as

the ones in Section 4.1.1. The local randomizer R□ looks as follows:
For any set of nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , each node 𝑣 invokes

the local randomizer Rstar (𝑥, 𝑓𝑉 ,2, 𝑛, 𝑞, 𝜀
′′, 𝛿 ′′) twice. The shuffler

shuffles all the messages and the analyzer A□ can compute

𝐶□ (𝐼 ) =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

˜𝑓 1

𝑉 ,2
(𝐼 ) ·

(
˜𝑓 2

𝑉 ,2
(𝐼 ) − 1

)
,

where
˜𝑓 1

𝑉 ,2
(𝐼 ) and ˜𝑓 2

𝑉 ,2
(𝐼 ) are obtained from two separate invoca-

tions of the local randomizer Rstar.

4.2.2 Analysis. We then present the analysis. Notably, the proofs

for the privacy and efficiency analysis are similar to those in triangle

counting and are therefore omitted.

Theorem 4.4. For any given privacy budget 𝜀, the sampling proba-

bility 𝑞 and the maximum degree 𝑑 such that 𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ −

1)) < 4, the local randomizer R□ satisfies (𝜀, 𝛿)-shuffle DP.

Theorem 4.5. For any instance 𝐼 ∈ I,

E[𝐶□ (𝐼 )] = 𝐶□ (𝐼 ) .

When 𝑞 = 1, for any given privacy budget 𝜀 < 2 and any instance

𝐼 ∈ I,

Var[𝐶□ (𝐼 )] = 𝑂̃

(
𝑛𝑑4

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑2

𝜀4

)
.

Instead, when 𝑞 = 1√
𝑑
, for any given privacy budget 𝜀 < 2 such

that 𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ − 1)) < 𝑂 (1) and any instance 𝐼 ∈ I,

Var[𝐶□ (𝐼 )] = 𝑂 (𝑛𝑑4.5) + 𝑂̃
(
𝑛𝑑4

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑2

𝜀4

)
.

Proof. The proof is similar to the one of triangle counting, and

we reuse some results from that proof. For any set of nodes 𝑉 =

{𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , we have

E[ ˜𝑓 1

𝑉 ,2
(𝐼 )] = E[ ˜𝑓 2

𝑉 ,2
(𝐼 )] = E[ ˜𝑓𝑉 ,2 (𝐼 )] = 𝑓𝑉 ,2 (𝐼 ),

and

Var[ ˜𝑓 1

𝑉 ,2
(𝐼 )] = Var[ ˜𝑓 2

𝑉 ,2
(𝐼 )] = Var[ ˜𝑓𝑉 ,2 (𝐼 )],

where
˜𝑓𝑉 ,2 (𝐼 ) is the estimate in triangle counting. Thus, the expec-

tation is

E[𝐶□ (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
E[ ˜𝑓 1

𝑉 ,2
(𝐼 )] · (E[ ˜𝑓 2

𝑉 ,2
(𝐼 )] − 1)

=
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
𝑓𝑉 ,2 (𝐼 ) · (𝑓𝑉 ,2 (𝐼 ) − 1)

=𝐶□ (𝐼 )

The estimate for any two sets of nodes is independent, therefore,

the variance is

Var[𝐶□ (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
Var[ ˜𝑓 1

𝑉 ,2
(𝐼 ) ·

(
˜𝑓 2

𝑉 ,2
(𝐼 ) − 1

)
] .
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We first analyze the variance Var[ ˜𝑓 1

𝑉 ,2
(𝐼 ) ·

(
˜𝑓 2

𝑉 ,2
(𝐼 ) − 1

)
]. For any

set of nodes 𝑉 = {𝑣𝑖 , 𝑣 𝑗 }, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 ,

Var[ ˜𝑓 1

𝑉 ,2
(𝐼 ) · ( ˜𝑓 2

𝑉 ,2
(𝐼 ) − 1)]

=Var[ ˜𝑓𝑉 ,2 (𝐼 )] ·
(
[E[ ˜𝑓𝑉 ,2 (𝐼 ) − 1]]2 + [E[ ˜𝑓𝑉 ,2 (𝐼 )]]

2 + Var[ ˜𝑓𝑉 ,2 (𝐼 )]
)

=

(
1 − 𝑞
𝑞
· 𝑓𝑉 ,2 (𝐼 ) + 𝑂̃

(
𝑑

𝜀2

))
·
(
2(𝑓𝑉 ,2 (𝐼 ))

2 + 1 − 3𝑞

𝑞
· 𝑓𝑉 ,2 (𝐼 ) + 𝑂̃

(
𝑑

𝜀2

))
Given the maximum degree is upper bounded by 𝑑 , we have∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
(𝑓𝑉 ,2 (𝐼 ))

3 = 𝑂
(
𝑛𝑑4

)
.

Therefore, the overall variance is

Var[𝐶□ (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉
Var[ ˜𝑓 1

𝑉 ,2
(𝐼 ) · ( ˜𝑓 2

𝑉 ,2
(𝐼 ) − 1)]

=
1 − 𝑞
𝑞
·𝑂 (𝑛𝑑4) + (1 − 𝑞) (1 − 3𝑞)

𝑞2
·𝑂 (𝑛𝑑3)

+ 2 − 4𝑞

𝑞
· 𝑂̃

(
𝑛𝑑3

𝜀2

)
+ 𝑂̃

(
𝑛𝑑4

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑2

𝜀4

)
When 𝑞 = 1, the variance is

Var[𝐶□ (𝐼 )] = 𝑂̃

(
𝑛𝑑4

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑2

𝜀4

)
.

Instead, when 𝑞 = 1√
𝑑
, the variance is

Var[𝐶□ (𝐼 )] = 𝑂
(
𝑛𝑑4.5) + 𝑂̃ (

𝑛𝑑4

𝜀2

)
+ 𝑂̃

(
𝑛2𝑑2

𝜀4

)
.

□

Theorem 4.6. For any given privacy budget 𝜀 < 2 and sampling

probability 𝑞 such that 𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ − 1)) < 𝑂 (1), the

communication cost is 𝑂̃ (𝑞 ·𝑑2+ 𝑞𝑛
√
𝑑

𝜀 ) bits per node in expectation.

4.2.3 Improvement of Communication Cost. Similarly, we can re-

duce the communication cost by estimating the frequency for only

a few 𝑘-stars. We divide the sets of nodes into 𝑛 groups as de-

scribed in Section 4.1.3. Given the parameter 𝑚, the number of

groups that we need to analyze, the privacy budgets 𝜀′′ and 𝛿 ′′

are the same as the ones in Section 4.1.3. The overall flow of the

mechanism is modified similarly. The analyzer A□ first chooses

𝑚 random numbers 𝐿 ⊆ [𝑛] and sends the numbers to each node.

Then in the local randomizer R𝑚□ , each node 𝑣 invokes the local

randomizer Rstar (𝑥, 𝑓𝑉 ,2, 𝑛, 𝑞, 𝜀
′′, 𝛿 ′′) twice for any set of nodes

𝑉 = {𝑣𝑖 , 𝑣 𝑗 } ∈ Γℓ , ℓ ∈ 𝐿. The shuffler shuffles all the messages and

the analyzer A□ can compute

˜𝑓□ (𝐼 ) =
𝑛

𝑚
·
∑︁
ℓ∈𝐿

∑̄︁
𝑉 ∈Γℓ

˜𝑓 1

𝑉 ,2
(𝐼 ) · ( ˜𝑓 2

𝑉 ,2
(𝐼 ) − 1) .

The local randomizer R𝑚□ satisfies (𝜀, 𝛿)-shuffle DP as long as 𝜀′′𝑞 =

ln(1 + 1

𝑞 · (𝑒
𝜀′′ − 1)) < 4. The number of noisy messages can also

be reduced by a factor of
𝑚
𝑛 .

4.3 3-hop Path Counting
We then focus on the 3-hop path counting problem. Let 𝑘 = 2, and

the number of 3-hop paths in the instance 𝐼 is

𝐶⊔ (𝐼 ) =
∑︁
𝑖∈[𝑛]

𝑓{𝑣𝑖 },2 (𝐼 ) · (𝑑𝑖 − 1) .

Each 3-hop path is counted twice in𝐶⊔ (𝐼 ), and triangles are counted
as 3-hop paths as well. Since we can remove the triangles by count-

ing them with part of the privacy budget, we only focus on the

3-hop path counting function 𝐶⊔ (𝐼 ) in this section.

A straightforward solution is to estimate 𝑓{𝑣𝑖 },2 (𝐼 ) directly using
the local randomizer Rstar for any node 𝑣𝑖 ∈ 𝑉 , where we add noise

proportional to Δ = 𝑂 (𝑑) for all the frequencies. However, many

frequencies may not vary so much between neighboring instances,

as demonstrated in Example 4.2.

Figure 2: Neighboring instances in Example 4.2.

Example 4.2. Consider the neighboring instances as shown in

Figure 2. Assume the given degree upper bound 𝑑 is 4. For instance

𝐼 in (a), we have 𝑓{𝑣1 },2 (𝐼 ) = 𝑓{𝑣2 },2 (𝐼 ) = 9 and 𝑓{𝑣𝑖 },2 (𝐼 ) = 7 for

any 𝑖 ≥ 3. In contrast, for the neighboring instance 𝐼 ′ in (b), which

removes the edge (𝑣1, 𝑣2), we instead have 𝑓{𝑣𝑖 },2 (𝐼 ′) = 6 for any 𝑖 .

Therefore, the difference between 𝑓{𝑣𝑖 },2 (𝐼 ) and 𝑓{𝑣𝑖 },2 (𝐼 ′) is 3 for
𝑖 = 1, 2 and 1 for any other 𝑖 .

We can verify that given the different edge (𝑣𝑖∗ , 𝑣 𝑗∗ ) between
neighboring instances 𝐼 ∼ 𝐼 ′, 𝑓{𝑣𝑖 },2 (𝐼 ) and 𝑓{𝑣𝑖 },2 (𝐼 ′) may have a

difference proportional to 𝑂 (𝑑) if and only if 𝑖 = 𝑖∗ or 𝑖 = 𝑗∗. For
any other 𝑖 , 𝑓{𝑣𝑖 },2 (𝐼 ) and 𝑓{𝑣𝑖 },2 (𝐼 ′) will differ by at most 𝑂 (1).

Therefore, we turn to the following solution and construct a new

graph 𝐼 . We add 𝑑 − 1 additional nodes𝑊 = {𝑤1, . . . ,𝑤𝑑−1
} to the

graph. For any node 𝑣𝑖 ∈ 𝑉 and any 𝑗 ∈ [𝑑𝑖 − 1],6 we also add an

edge between 𝑣𝑖 and𝑤 𝑗 . Then for any node 𝑣𝑖 , we have

𝑓{𝑣𝑖 },2 (𝐼 ) =
∑︁

𝑖′∈[𝑛]
𝑥𝑖,𝑖′ · (𝑑𝑖′ − 1) =

∑︁
𝑖′∈[𝑛]

𝑥𝑖,𝑖′ ·
∑︁

𝑗∈[𝑑−1]
I[𝑑𝑖′ − 1 ≥ 𝑗]

=
∑︁

𝑗∈[𝑑−1]

∑︁
𝑖′∈[𝑛]

𝑥𝑖,𝑖′ · I[𝑑𝑖′ − 1 ≥ 𝑗] =
∑︁

𝑗∈[𝑑−1]
𝑓{𝑣𝑖 ,𝑤𝑗 },2 (𝐼 )

Therefore, for any 𝑖 ∈ [𝑛], we can estimate 𝑓{𝑣𝑖 ,𝑤𝑗 },2 (𝐼 )’s and sum

them to estimate 𝑓{𝑣𝑖 },2 (𝐼 )’s. In this scenario, for any neighboring

instances, the difference between 𝑓{𝑣𝑖 ,𝑤𝑗 },2 (𝐼 ) and 𝑓{𝑣𝑖 ,𝑤𝑗 },2 (𝐼 ′) is
at most 𝑂 (1). In contrast, the difference between 𝑓{𝑣𝑖 },2 (𝐼 ) and
𝑓{𝑣𝑖 },2 (𝐼 ′) can be 𝑂 (𝑑). Therefore, our new method reduces the

variance of each 𝑓{𝑣𝑖 },2 (𝐼 ) by a factor of 𝑑 .

Example 4.3. Given 𝑑 = 3, consider the instance 𝐼 in Figure 3 (a).

We construct the instance 𝐼 , as shown in Figure 3 (b), as follows:

We first add two additional nodes 𝑤1 and 𝑤2. Then for 𝑣1, since

6
We set [𝑛] = ∅ when 𝑛 ≤ 0.
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Figure 3: Instances in Example 4.3.

𝑑1 = 1, we do not add any edge between 𝑣1 and𝑤𝑖 , 𝑖 = 1, 2. For 𝑣2,

since 𝑑2 = 3, we add edges (𝑣2,𝑤1) and (𝑣2,𝑤2). Similarly, we add

edges (𝑣3,𝑤1) and (𝑣4,𝑤1) for the nodes 𝑣3 and 𝑣4. We can then

verify that

𝑓{𝑣2 },2 (𝐼 ) = 𝑓{𝑣2,𝑤1 },2 (𝐼 ) + 𝑓{𝑣2,𝑤2 },2 (𝐼 ) = 2 + 0 = 2,

and

𝑓{𝑣3 },2 (𝐼 ) = 𝑓{𝑣3,𝑤1 },2 (𝐼 ) + 𝑓{𝑣3,𝑤2 },2 (𝐼 ) = 2 + 1 = 3.

4.3.1 Mechanism. We first split the privacy budget as follows. Let

𝜀′ = 𝜀
2
, 𝜀grp = 𝜀′

3
, 𝛿grp = 𝛿

3𝑒𝜀
grp ,

𝜀′′ = argmax{𝜀 :

√︂
4𝑑 ln( 2

𝛿
)𝜀 + 2𝑑𝜀 (𝑒𝜀 − 1) ≤ 𝜀grp},

and 𝛿 ′′ = 𝛿
4𝑑
. The local randomizer R⊔ looks as follows: Each node

𝑣 first invokes the local randomizer R
deg
(𝑥, 𝜀′) to analyze the node

degrees. Then, for any 𝑖 ∈ [𝑛], let 𝑥𝑖 ∈ {0, 1}𝑛+𝑑−1
denote the data

that the node 𝑣𝑖 holds in the instance 𝐼 , i.e.,

𝑥𝑖, 𝑗 =

{
𝑥𝑖, 𝑗 if 𝑗 ≤ 𝑛

I[𝑑𝑖 − 1 ≥ 𝑗 − 𝑛] otherwise

For any set of nodes {𝑣𝑖 ,𝑤 𝑗 }, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑑 − 1], each node 𝑣 then

invokes the local randomizer Rstar (𝑥, 𝑓{𝑣𝑖 ,𝑤𝑗 },2, 𝑛, 𝑞, 𝜀
′′, 𝛿 ′′). The

shuffler shuffles the messages and the analyzer A⊔ can estimate
˜𝑑𝑖

and
˜𝑓{𝑣𝑖 ,𝑤𝑗 },2 (𝐼 ) for all sets of nodes {𝑣𝑖 ,𝑤 𝑗 }, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑑 − 1].

Finally, the analyzer computes

𝐶⊔ (𝐼 ) =
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑑−1]

˜𝑓{𝑣𝑖 ,𝑤𝑗 },2 (𝐼 ) · ( ˜𝑑𝑖 − 1) .

4.3.2 Analysis.

Theorem 4.7. For any given privacy budget 𝜀, the sampling proba-

bility 𝑞 and the maximum degree 𝑑 such that 𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ −

1)) < 4, the local randomizer R⊔ satisfies (𝜀, 𝛿)-shuffle DP.

Proof. First, invoking the local randomizer R
deg

satisfies pure

𝜀′-shuffle DP. We then observe that for any neighboring instances

𝐼 ∼ 𝐼 ′, the corresponding graphs 𝐼 and 𝐼 ′ can differ by at most 3

edges. Furthermore, any of these differing edges will change at most

2𝑑 output distributions of the local randomizer Rstar. Therefore,

according to group privacy and the composition theorems, invoking

all local randomizer Rstar’s satisfies (𝜀′, 𝛿)-shuffle DP and the local

randomizer R⊔ satisfies (𝜀, 𝛿)-shuffle DP. □

Theorem 4.8. For any given privacy budget 𝜀 < 2 such that

𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ − 1)) < 𝑂 (1) and any instance 𝐼 ∈ I, we have

E[𝐶⊔ (𝐼 )] = 𝐶⊔ (𝐼 ),

and

Var[𝐶⊔ (𝐼 )] =
1 − 𝑞
𝑞
·𝑂 (𝑛𝑑4) + 1 − 𝑞

𝑞
·𝑂

(
𝑛𝑑2

𝜀2

)
+𝑂̃

(
𝑛𝑑4

𝜀2

)
+𝑂̃

(
𝑛𝑑2

𝜀4

)
.

Proof. For any 𝑖 ∈ [𝑛], the expectation is

E[ ˜𝑓{𝑣𝑖 },2 (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑤𝑗 }, 𝑗∈[𝑑−1]
E[ ˜𝑓𝑉 ,2 (𝐼 )]

=
∑︁

𝑉={𝑣𝑖 ,𝑤𝑗 }, 𝑗∈[𝑑−1]
𝑓𝑉 ,2 (𝐼 ) = 𝑓{𝑣𝑖 },2 (𝐼 )

and thus,

E[𝐶⊔ (𝐼 )] =
∑︁
𝑖∈[𝑛]

E[ ˜𝑓{𝑣𝑖 },2 (𝐼 )] · (E[ ˜𝑑𝑖 ] − 1)

=
∑︁
𝑖∈[𝑛]

𝑓{𝑣𝑖 },2 (𝐼 ) · (𝑑𝑖 − 1) = 𝐶⊔ (𝐼 )

For any node 𝑣𝑖 ∈ 𝑉 ,

Var[ ˜𝑓{𝑣𝑖 },2 (𝐼 )] =
∑︁

𝑉={𝑣𝑖 ,𝑤𝑗 }, 𝑗∈[𝑑−1]
Var[ ˜𝑓𝑉 ,2 (𝐼 )]

=
1 − 𝑞
𝑞
·𝑂 (𝑑2) + 𝑂̃

(
𝑑2

𝜀2

)
.

and

Var[ ˜𝑓{𝑣𝑖 },2 (𝐼 ) · ( ˜𝑑𝑖 − 1)]

=Var[ ˜𝑓{𝑣𝑖 },2 (𝐼 )] · ( [E[ ˜𝑑𝑖 − 1]]2 + Var[ ˜𝑑𝑖 ]) + [E[ ˜𝑓{𝑣𝑖 },2 (𝐼 )]]
2 · Var[ ˜𝑑𝑖 ]

=

(
1 − 𝑞
𝑞
·𝑂 (𝑑2) + 𝑂̃

(
𝑑2

𝜀2

))
·
(
𝑂 (𝑑2) +𝑂

(
1

𝜀2

))
+𝑂 (𝑑4) ·𝑂

(
1

𝜀2

)
=

1 − 𝑞
𝑞
·
(
𝑂 (𝑑4) +𝑂

(
𝑑2

𝜀2

))
+ 𝑂̃

(
𝑑4

𝜀2

)
+ 𝑂̃

(
𝑑2

𝜀4

)
Therefore, the overall variance is

Var[𝐶⊔ (𝐼 )] =
∑︁
𝑖∈[𝑛]

Var[ ˜𝑓{𝑣𝑖 },2 (𝐼 ) · ( ˜𝑑𝑖 − 1)]

=
1 − 𝑞
𝑞
·𝑂 (𝑛𝑑4) + 1 − 𝑞

𝑞
·𝑂

(
𝑛𝑑2

𝜀2

)
+ 𝑂̃

(
𝑛𝑑4

𝜀2

)
+ 𝑂̃

(
𝑛𝑑2

𝜀4

)
□

Theorem 4.9. For any given privacy budget 𝜀 < 2 such that

𝜀′′𝑞 = ln(1 + 1

𝑞 · (𝑒
𝜀′′ − 1)) < 𝑂 (1), the communication cost for each

node is 𝑂̃ (𝑞 · 𝑑2 + 𝑞𝑑1.5

𝜀 ) bits in expectation.

Proof. Consider any node 𝑣 ∈ 𝑉 , 𝑂 (log(𝑛)) bits are sent for

estimating the node degrees (assuming we clip the message to

[0, 𝑑]), and according to Lemma 3.7, 𝑂̃ (𝑞 · 𝑑2 + 𝑞𝑑1.5

𝜀 ) messages are

sent in expectation for counting the 2-stars. □

Example 4.4. Consider the case where the constant privacy budget
𝜀 < 2. We can set 𝑞 = 1, i.e., there is no sampling, then the variance

is 𝑂̃ (𝑛𝑑4) and the communication cost is 𝑂̃ (𝑑2) messages per node

in expectation. Instead, if we set 𝑞 = 1√
𝑑
, the variance increases

to 𝑂̃ (𝑛𝑑4.5) while the communication cost decreases to 𝑂̃ (𝑑1.5)
messages per node in expectation.
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4.3.3 Improvement of Communication Cost. Similarly, we can re-

duce the communication cost by estimating the frequency for only

a few 𝑘-stars. Given the parameter 𝑚, the number of 𝑘-star fre-

quencies that we need to analyze, the privacy budgets 𝜀′′ and 𝛿 ′′

are the same as the ones in Section 4.3.1. The overall flow of the

mechanism is modified similarly. The analyzer A⊔ first chooses

𝑚 random numbers 𝐿 ⊆ [𝑛] and sends the numbers to each node.

Then the local randomizer R𝑚⊔ looks as follows: Each node 𝑣 first in-

vokes the local randomizer R
deg
(𝑥, 𝜀′) to analyze the node degrees.

For any sets of nodes {𝑣ℓ ,𝑤 𝑗 }, ℓ ∈ 𝐿, 𝑗 ∈ [𝑑 − 1], each node 𝑣 then

invokes the local randomizer Rstar (𝑥, 𝑓{𝑣ℓ ,𝑤𝑗 },2, 𝑛, 𝑞, 𝜀
′′, 𝛿 ′′). The

shuffler shuffles all the messages and the analyzerA⊔ can compute

𝐶⊔ (𝐼 ) =
𝑛

𝑚
·
∑︁
ℓ∈𝐿

∑︁
𝑗∈[𝑑−1]

˜𝑓{𝑣ℓ ,𝑤𝑗 },2 (𝐼 ) · ( ˜𝑑ℓ − 1).

Clearly, the privacy guarantee still holds, and the number of noisy

messages can also be reduced by a factor of
𝑚
𝑛 .

4.4 General Subgraph Counting
Our mechanism can be extended to count subgraphs beyond the

ones discussed earlier. In the following paragraphs, we outline

the approach for counting the other four-node subgraphs, while

omitting the detailed analysis for brevity.

For 𝐺6 in Figure 4, we set 𝑘 = 3, and the number of 𝐺6 in the

instance 𝐼 is

𝐶𝐺6
(𝐼 ) =

∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

𝑓𝑉 ,3 (𝐼 ) · 𝑥𝑖, 𝑗 .

We can estimate all 𝑓𝑉 ,3 (𝐼 )’s and 𝑥𝑖, 𝑗 ’s using the local randomizer

Rstar andRadj
respectively. It is noted that in this particular case, we

have a scenario where 𝑘 > |𝑇 |, distinguishing it from the examples

mentioned earlier.

For 𝐺7 in Figure 4, i.e. the 2-triangle, we set 𝑘 = 2, and the

number of 𝐺7 in the instance 𝐼 is

𝐶𝐺7
(𝐼 ) =

∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

𝑓𝑉 ,2 (𝐼 ) · (𝑓𝑉 ,2 (𝐼 ) − 1) · 𝑥𝑖, 𝑗 .

We can estimate all 𝑓𝑉 ,2 (𝐼 )’s and 𝑥𝑖, 𝑗 ’s using the local randomizer

Rstar and Radj
respectively. Each 2-triangle is counted twice, and

we can also scale down the count during post-processing.

The solution for 𝐺8 in Figure 4, i.e., the complete graph on 4

nodes, is more complicated. We set 𝑘 = 3 and the number of 𝐺8 in

the graph is

𝐶𝐺8
(𝐼 ) =

∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 ,𝑣𝑘 },𝑣𝑖 ,𝑣𝑗 ,𝑣𝑘 ∈𝑉

𝑓𝑉 ,3 (𝐼 ) · 𝑥𝑖, 𝑗 · 𝑥𝑖,𝑘 · 𝑥 𝑗,𝑘 .

We can estimate these values using the local randomizer Rstar

and R
adj

. One potential problem is that the communication cost

is quite high, as we need to count the 𝑘-stars for 𝑂 (𝑛3) sets of
nodes. A sparse frequency estimation protocol under shuffle DP

could potentially solve this problem. However, tackling this task is

beyond the scope of the current work, and we defer it to the future.

The examples show that any subgraph counting problem can

be viewed as dot products involving graph statistics, such as the

adjacency matrix, degree distributions, and 𝑘-star distribution. This

allows us to generalize our mechanism to count any complicated

subgraphs as long as the privacy budget is well separated.

Figure 4: Subgraphs with at most four nodes.

4.5 Summary
We assume 𝜀 = Θ(1) and summarize the results in Table 1. For our

mechanism, we set the sampling probability 𝑞 = 1√
𝑑
. The existing

results for shuffle DP come from WedgeShuffle [19], and the result
for triangle counting under local DP comes from GenLocal [12].

To our knowledge, this is the one-round mechanism that achieves

the best accuracy guarantee, as RR [17] can only achieve a variance

of 𝑂 (𝑛4). Furthermore, GenLocal can be extended to count any

subgraph under local DP, with the accuracy analysis in the appendix.

We report the variance, the communication cost, and the analysis

time. For both our mechanism and WedgeShuffle, the analysis time

is proportional to the total number of messages received from the

shuffler. For GenLocal, it is instead 𝑂 (𝑛𝑘 ), where 𝑘 is the number

of nodes in the target subgraph.

We begin by focusing on the shuffle DP mechanisms. Although

our mechanism incurs a slightly higher communication cost, it is

more general and exhibits a significantly lower variance across all

subgraph counting tasks. Moreover, while not stated in the table,

we can reduce the communication cost by adjusting the number of

𝑘-stars for analysis and the sampling probability, thereby achieving

a balance between accuracy and communication cost. We then

compare our results with those under local DP. Our variance is

smaller, and a notable distinction lies in the analysis time: the local

DP mechanism requires an analysis time proportional to 𝑂 (𝑛𝑘 ) to
count subgraphs with 𝑘 nodes, which hinders its practicality.

Table 3: Basic information of graph datasets.

Dataset Nodes Edges Max degree Degree upper bound 𝑑

AstroPh 18,771 198,050 504 505

Enron 36,692 183,381 1,383 1,385

Facebook 4,039 88,234 1,045 1,050

GrQc 5,241 14,484 81 85

5 Experiments
We conducted extensive experiments with various subgraph count-

ing queries. For comparison, we tested the following one-round

shuffle-DP mechanisms:

• GenShuffle𝑚 : Our general mechanism given the parameter

𝑚. When𝑚 > 1, we select the sampling probability 𝑞 so that

the number of noisy messages sent by each node is 𝑂̃ (𝑛) in
expectation; when𝑚 = 1, we simply set 𝑞 = 1.

• WedgeShuffle [19]: Themechanism estimates wedge counts

and count triangles and 4-cycles under shuffle DP.

We do not compare our approach with other one-round local DP

mechanisms, as they are impractical or exhibit poor performance,

as demonstrated in [19].
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Table 4: Experimental Results for Subgraph Counting.

Dataset AstroPh Enron Facebook GrQc

Triangle Count 1,351,441 727,044 1,612,010 48,260

Result Error (%) Cost Error (%) Cost Error (%) Cost Error (%) Cost

GenShuffle𝑛 18.03 38.88 MB 109.21 78.60 MB 5.15 8.59 MB 54.83 10.17 MB

GenShuffle5 37.10 22.12 KB 120.42 22.12 KB 10.20 22.13 KB 112.01 22.12 KB

GenShuffle1 55.76 0.69 KB 99.36 0.69 KB 21.63 0.69 KB 83.08 0.69 KB

WedgeShuffle 74.55 0.10 KB 397.73 0.10 KB 20.46 0.10 KB 249.85 0.10 KB

4-cycle Count 44,916,549 36,262,229 144,023,053 1,054,723

Result Error (%) Cost Error (%) Cost Error (%) Cost Error (%) Cost

GenShuffle𝑛 155.80 77.60 MB 1315.65 156.89 MB 25.96 17.15 MB 337.44 20.29 MB

GenShuffle20 34.29 797.07 KB 130.75 797.12 KB 4.28 797.10 KB 234.13 796.93 KB

GenShuffle5 39.72 44.20 KB 64.64 44.20 KB 9.49 44.23 KB 101.61 44.19 KB

GenShuffle1 63.09 1.33 KB 89.52 1.33 KB 23.38 1.33 KB 97.23 1.33 KB

WedgeShuffle 42.42 0.10 KB 99.82 0.10 KB 24.19 0.10 KB 279.81 0.10 KB

3-hop Path Count 990,797,443 2,315,397,774 1,060,162,219 6,305,160

Result Error (%) Cost Error (%) Cost Error (%) Cost Error (%) Cost

GenShuffle𝑛 0.97 6.22 MB 2.24 15.67 MB 4.00 1.37 MB 3.92 1.33 MB

GenShuffle400 17.58 2.71 MB 39.65 6.60 MB 11.64 0.68 MB 23.00 0.62 MB

GenShuffle100 32.95 2.38 MB 68.21 5.79 MB 22.44 0.61 MB 38.13 0.54 MB

GenShuffle1 106.30 25.34 KB 98.48 61.47 KB 99.03 0.36 MB 105.04 5.79 KB

The experiments were conducted on a machine with a 2.2GHz

Intel Xeon CPU and 256GB memory. We repeat each experiment

50 times, remove the best 10 and the worst 10 runs, and report the

average error of the remaining runs. The default privacy budget is

𝜀 = 4 and 𝛿 = 10
−5
. The effect of 𝜀 is shown in the latter sections.

5.1 Datasets
We used the following real-world graph datasets: AstroPh, En-
ron, Facebook, and GrQc. Among the graph datasets, AstroPh
and GrQc are collaboration networks, Enron is a communication

network, and Facebook is a social network. The basic informa-

tion of the graphs is given in Table 3: AstroPh and Facebook are

comparatively dense, whereas Enron and GrQc are very sparse.

For the graph datasets, our mechanisms need a degree upper

bound 𝑑 . Similar to previous work, we choose 𝑑 to be higher than

the actual maximum degree, as shown in Table 3.

5.2 Experimental Results
The experimental results are shown in Table 4. We report the rela-

tive errors and the communication cost for all the mechanisms.

Specifically, for WedgeShuffle, we assume that the analyst sends

a seed for each node to pair the nodes, and nodes only sendmessages

when their values are non-zero. This considerably reduces the com-

munication cost. In contrast, if this approach is not implemented,

the communication costs of WedgeShuffle range from 32.82 KB to

298.12 KB. Furthermore, the analysis time is directly proportional

to the communication cost for both shuffle-DP mechanisms; thus,

we omit the timing details in this context.

For triangle counting, we set 𝑞 = 1

5

√
𝑑
for GenShuffle𝑛 . We

can see that WedgeShuffle achieves an error of less than 100%

in only two of the four instances. In contrast, our approach can

provide reasonable answers across all four instances. Moreover,

we observe that, for the dense graphs, i.e., AstrPh and Facebook,
the error decreases as𝑚 increases. However, for the sparse ones,

i.e., Enron and GrQc, the error may increase. This occurs because,

with an increase in 𝑚, the sampling error decreases, but the DP

noise increases as we allocate the privacy budget 𝜀. Moreover, the

communication cost of GenShuffle also rises with an increase of𝑚.

When𝑚 = 𝑛, the communication cost may seem excessively high,

which appears to challenge our analysis of 𝑂̃ (𝑛2). However, this is
attributed to the presence of several logarithmic terms within our

communication cost calculation.

For 4-cycle counting, we also set 𝑞 = 1

5

√
𝑑
for GenShuffle𝑛 .

We can see that GenShuffle1 outperforms WedgeShuffle in three

instances, and GenShuffle5 performs better in all four instances.

As𝑚 increases from 1 to 20, the error decreases for dense graphs,

while it may increase for sparse graphs. Moreover, we notice that

the error increases significantly when we set𝑚 = 𝑛. After careful

investigation, we note that this is because when𝑚 is large, we need

to split the privacy budget 𝜀 into very small portions. This leads to

the variance term∑︁
𝑉={𝑣𝑖 ,𝑣𝑗 },𝑣𝑖 ,𝑣𝑗 ∈𝑉

Var[ ˜𝑓 1

𝑉 ,2
(𝐼 )] · Var[ ˜𝑓 2

𝑉 ,2
(𝐼 )] = 𝑂̃ (𝑛

2𝑑2

𝜀4
)

dominating all other errors, resulting in poor performance of the

mechanism. As a result, we recommend keeping the value of 𝑚

relatively low when counting 4-cycles to enhance performance.

Finally, for 3-hop path counting, we set the sampling probability

𝑞 so that the number of messages is about 20𝑛 for GenShuffle100

and GenShuffle400, and about 40𝑛 for GenShuffle𝑛 . The amplified

privacy budget 𝜀𝑞 is carefully verified to ensure that the mechanism

satisfies DP. The results indicate that the accuracy improves as𝑚

increases, even when the sampling probability 𝑞 is progressively

reduced to satisfy the communication cost constraints. Ultimately,

when𝑚 reaches 𝑛, the mechanism obtains the lowest error. Thus,

for counting 3-hop paths, we recommend setting𝑚 = 𝑛 to optimize

performance, while managing communication costs through the

sampling probability 𝑞.
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Figure 5: Experimental Results for Subgraph Counting on AstroPh with Various 𝜀.
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Figure 6: Experimental Results for Triangle Counting on Facebook with Various 𝑞 and𝑚.
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Figure 7: Degree distribution of Facebook.

Privacy Budget 𝜀. We take triangle counting and 3-hop path

counting on AstroPh as examples, and the results are shown in

Figure 5. We first focus on our mechanism GenShuffle. The rela-
tive error and communication cost decrease as the privacy budget

increases. Moreover, the relative error of GenShuffle𝑛 decreases

much faster than that of GenShuffle𝑚 ’s where𝑚 < 𝑛. This is be-

cause the sampling error is small for GenShuffle𝑛 . However, for
others, the sampling error is the main component in the overall

error. Similarly, for WedgeShuffle, with our improvement on their

implementation, the error and the communication cost both de-

crease as the privacy budget increases. We then compare the mech-

anisms together for triangle counting. When the privacy budget

𝜀 is small, our mechanism GenShuffle outperforms the baselines

in terms of accuracy. In contrast, when the privacy budget 𝜀 is

large, all mechanisms except for GenShuffle𝑛 demonstrate similar

performance due to the dominating sampling error. In this context,

GenShuffle𝑛 can achieve considerably better accuracy.

Sampling Probability 𝑞 and Number of Groups 𝑚. We start by

analyzing the effect of 𝑞. Using triangle counting on Facebook
as the example, we evaluate GenShuffle𝑛 with various 𝜀 and 𝑞.

The results are shown in Figure 6. As we increase 𝑞, the error

decreases while the communication cost increases. It is intuitive,

as it represents the trade-off between accuracy and efficiency.

Next, we investigate the impact of the number of groups 𝑚.

With 𝜀 = 4, the results presented in Table 4 indicate that a large

𝑚 usually enhances performance for triangle counting and 3-hop

path counting. However, for 4-cycle counting, a large𝑚 can yield

unhelpful results, as explained before. We then analyze the effects

for various 𝜀, with the results illustrated in Figure 6. When 𝜀 is large,

increasing the number of groups𝑚 leads to a reduction in error and

a rise in communication costs. Conversely, when 𝜀 is small, such as

𝜀 = 1, the error may increase with a larger𝑚. This phenomenon

occurs because, with a smaller 𝜀, the DP error is significantly greater

than the sampling error, and it escalates considerably when we

allocate the privacy budget across more groups.

To summarize, our protocols’ empirical performance depends

critically on𝑚, while its optimal value can vary based on the density

of the input graph, the subgraph pattern, and the privacy budget.

While determining the optimal value of 𝑚 in a principled man-

ner remains an open question, we provide the following empirical

guidelines according to our experimental study:

(1) A smaller𝑚 is generally better for sparse graphs, while a

larger𝑚 is better for dense graphs.

(2) A smaller𝑚 is better for 4-cycle counting, while a larger𝑚

is better for triangle and 3-hop path counting.

(3) A smaller 𝑚 is better when 𝜀 is small, while a larger 𝑚 is

better when 𝜀 is large.

Degree Upper Bound𝑑 . Throughout our analysis and experiments

so far, we have assumed a degree upper bound 𝑑 . While such an

upper bound is required for the general case, it is only a soft require-

ment for GenShuffle𝑚 to count triangles or 4-cycles when𝑚 ≤ 𝑑 ,

i.e., the privacy guarantee of the protocol still holds even if some
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Table 5: Experimental Results for Triangle Counting on Face-
book with Various 𝑑 and𝑚.

Relative Error (%)

𝑑 GenShuffle1 GenShuffle5 GenShuffle20

1050 21.63 10.20 5.69

1000 20.61 11.38 5.74

300 20.04 10.33 6.69

nodes have degrees higher than the given 𝑑 . This is because when

𝑚 ≤ 𝑑 , we have ˇ𝑑 = min(𝑑,𝑚) = 𝑚 (as defined in Section 4.1.3).

Consequently, the privacy budget is allocated using𝑚 instead of 𝑑 .

Furthermore, we examine its effect on the errors by conducting

experiments on Facebook, whose degree distribution is shown

in Figure 7, and the true maximum degree is 1045. We tested

GenShuffle𝑚 with 𝑚 = 1, 5, and 20 with 𝑑 = 1050, 1000 and

300. The experimental results are shown in Table 5, from which we

see that the impact of different 𝑑 values on the error is not signifi-

cant. This is because, when𝑚 < 𝑑 , the mechanism uses only𝑚 to

separate the privacy budget, making 𝑑 irrelevant for performance.

6 Future Work
In this work, we focus mainly on one-round mechanisms. It is

well-established that for subgraph counting under edge local DP,

multi-round mechanisms exhibit superior performance compared

to one-round mechanisms. Consequently, it would be intriguing

to investigate potential enhancements to the mechanism when

employing multiple rounds. Moreover, it is known that node DP is

a stronger policy than edge DP, as it protects the presence of any

node along with all its incident edges. An interesting open question

remains whether node DP can be supported in local or shuffle DP.
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A Appendix
A.1 Subgraph Counting under Local DP
Eden et al. [12] propose a mechanism that counts the number of

triangles under local DP. The local randomizer is simply R
adj

. The

analyst first estimates 𝑥𝑖, 𝑗 for any pair of 𝑖, 𝑗 ∈ [𝑛], 𝑖 < 𝑗 , and

computes

𝐶△ (𝐼 ) = 3 ·
∑︁

{𝑖, 𝑗,𝑘 }∈(𝑛
3
),𝑖< 𝑗<𝑘

𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑖,𝑘 .

The mechanism achieves the following guarantees of privacy and

accuracy.

Theorem A.1. The mechanism satisfies pure 𝜀-local DP. For any

given privacy budget 𝜀 = Θ(1) and any instance 𝐼 ∈ I, E[𝐶△ (𝐼 )] =
𝐶△ (𝐼 ) and Var[𝐶△ (𝐼 )] = 𝑂 (𝑛3 + 𝑛𝑑3).
A.1.1 Extension to 3-hop Path Counting. We first consider the sim-

ple extension: The mechanism can be extended to count the number

of 3-hop paths under local DP by computing

𝐶⊔ (𝐼 ) = 2 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖<ℓ

𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ .

Theorem A.2. For any given privacy budget 𝜀 and any instance

𝐼 ∈ I, E[𝐶⊔ (𝐼 )] = 𝐶⊔ (𝐼 ) and

Var[𝐶⊔ (𝐼 )] = 𝑂

(
𝑛4

𝜀6

)
+𝑂

(
𝑛3𝑑2

𝜀4

)
+𝑂

(
𝑛2𝑑4

𝜀2

)
.

Proof. The expectation is

E[𝐶⊔ (𝐼 )]

=2 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖<ℓ
E[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ ]

=2 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖<ℓ
E[𝑥𝑖, 𝑗 ] · E[𝑥 𝑗,𝑘 ] · E[𝑥𝑘,ℓ ]

=2 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖<ℓ

𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ

=𝐶⊔ (𝐼 )
We then estimate the variance. We first estimate the covariance for

different cases. First, for any 𝑖, 𝑗, 𝑘, ℓ, ℓ′ ∈
(𝑛
5

)
,

Cov[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ , 𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ ′ ] = 𝑂

(
1

𝜀4

)
· 𝑥𝑘,ℓ · 𝑥𝑘,ℓ ′ ,

thus, ∑︁
𝑖, 𝑗,𝑘,ℓ,ℓ ′∈(𝑛

5
),ℓ<ℓ ′

Cov[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ , 𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ ′ ] = 𝑂

(
𝑛3𝑑2

𝜀4

)
.

Similarly, we have∑︁
𝑖, 𝑗,𝑘,ℓ,ℓ ′∈(𝑛

5
)
Cov[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ , 𝑥ℓ ′,𝑖 · 𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 ]

+ Cov[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ , 𝑥ℓ,𝑖 · 𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 ] = 𝑂

(
𝑛3𝑑2

𝜀4

)
.

These are the two cases where the two products share two 𝑥 ·,· terms.

Similarly, we can analyze the cases where the two products only

share one 𝑥 ·,· term, and the overall covariance is 𝑂
(
𝑛2𝑑4

𝜀2

)
. When

the two products do not share any 𝑥 ·,· term, the covariance is 0.

Therefore, the whole variance is

Var[ 1
2

·𝐶⊔ (𝐼 )]

=
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖<ℓ

Var[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ ] +𝑂
(
𝑛3𝑑2

𝜀4

)
+𝑂

(
𝑛3𝑑2

𝜀4

)
=

∑︁
{𝑖, 𝑗,𝑘,ℓ }∈(𝑛

4
),𝑖<ℓ

𝑂

(
1

𝜀6

)
+𝑂

(
𝑛3𝑑2

𝜀4

)
+𝑂

(
𝑛3𝑑2

𝜀4

)
=𝑂

(
𝑛4

𝜀6

)
+𝑂

(
𝑛3𝑑2

𝜀4

)
+𝑂

(
𝑛2𝑑4

𝜀2

)
□

A.1.2 Extension to 4-cycle Counting. The mechanism can also be

extended to count the number of 4-cycles under local DP by com-

puting

𝐶□ (𝐼 ) = 4 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 .

Theorem A.3. For any given privacy budget 𝜀 and any instance

𝐼 ∈ I, E[𝐶□ (𝐼 )] = 𝐶□ (𝐼 ), and

Var[𝐶□ (𝐼 )] = 𝑂

(
𝑛4

𝜀8

)
+𝑂

(
𝑛2𝑑3

𝜀4

)
+𝑂

(
𝑛𝑑5

𝜀2

)
.

Proof. The expectation is

E[𝐶□ (𝐼 )]

=4 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

E[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 ]

=4 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

E[𝑥𝑖, 𝑗 ] · E[𝑥 𝑗,𝑘 ] · E[𝑥𝑘,ℓ ] · E[𝑥ℓ,𝑖 ]

=4 ·
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖

=𝐶□ (𝐼 )
and the variance is

Var[ 1
4

·𝐶□ (𝐼 )]

=
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

Var[𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 ] + 2×( ∑︁
{𝑖, 𝑗,𝑘,ℓ,ℓ ′ }∈(𝑛

5
),𝑖<𝑘,ℓ<ℓ ′

Cov(𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 , 𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ ′ · 𝑥ℓ ′,𝑖 )

+∑︁
{𝑖, 𝑗,𝑘,𝑘 ′,ℓ,ℓ ′ }∈(𝑛

6
),𝑖< 𝑗,𝑘<𝑘 ′

Cov(𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 , 𝑥𝑖, 𝑗 · 𝑥 𝑗,𝑘 ′ · 𝑥𝑘 ′,ℓ ′ · 𝑥ℓ ′,𝑖 )
)
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=
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

(
E[𝑥2

𝑖, 𝑗 ] · E[𝑥
2

𝑗,𝑘
] · E[𝑥2

𝑘,ℓ
] · E[𝑥2

ℓ,𝑖 ]−

[E[𝑥𝑖, 𝑗 ]]2 · [E[𝑥 𝑗,𝑘 ]]2 · E[[𝑥𝑘,ℓ ]]2 · E[[𝑥ℓ,𝑖 ]]2
)
+ 2×( ∑︁

{𝑖, 𝑗,𝑘,ℓ,ℓ ′ }∈(𝑛
5
),𝑖<𝑘,ℓ<ℓ ′

(E[𝑥2

𝑖, 𝑗 ] · E[𝑥
2

𝑗,𝑘
] − [E[𝑥𝑖, 𝑗 ]]2 · [E[𝑥 𝑗,𝑘 ]]2)·

E[𝑥𝑘,ℓ ] · E[𝑥ℓ,𝑖 ] · E[𝑥𝑘,ℓ ′ ] · E[𝑥ℓ ′,𝑖 ]
+∑︁

{𝑖, 𝑗,𝑘,𝑘 ′,ℓ,ℓ ′ }∈(𝑛
6
),𝑖< 𝑗,𝑘<𝑘 ′

(E[𝑥2

𝑖, 𝑗 ] − [E[𝑥𝑖, 𝑗 ]]
2)·

E[𝑥 𝑗,𝑘 ] · E[𝑥𝑘,ℓ ] · E[𝑥ℓ,𝑖 ] · E[𝑥 𝑗,𝑘 ′ ] · E[𝑥𝑘 ′,ℓ ′ ] · E[𝑥ℓ ′,𝑖 ]
)

=
∑︁

{𝑖, 𝑗,𝑘,ℓ }∈(𝑛
4
),𝑖< 𝑗<ℓ,𝑖<𝑘

𝑂

(
1

𝜀8

)
+ 2×( ∑︁

{𝑖, 𝑗,𝑘,ℓ,ℓ ′ }∈(𝑛
5
),𝑖<𝑘,ℓ<ℓ ′

𝑂

(
1

𝜀4

)
· 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 · 𝑥𝑘,ℓ ′ · 𝑥ℓ ′,𝑖

+∑︁
{𝑖, 𝑗,𝑘,𝑘 ′,ℓ,ℓ ′ }∈(𝑛

6
),𝑖< 𝑗,𝑘<𝑘 ′

𝑂

(
1

𝜀2

)
· 𝑥 𝑗,𝑘 · 𝑥𝑘,ℓ · 𝑥ℓ,𝑖 · 𝑥 𝑗,𝑘 ′ · 𝑥𝑘 ′,ℓ ′ · 𝑥ℓ ′,𝑖

)
=𝑂

(
𝑛4

𝜀8

)
+𝑂

(
𝑛2𝑑3

𝜀4

)
+𝑂

(
𝑛𝑑5

𝜀2

)
When 𝜀 = Θ(1), the variance can be simplified to 𝑂 (𝑛4 + 𝑛𝑑5). □
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