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Random sampling is an effective tool for reducing the computational costs of query processing in large

databases. It has also been used frequently for private data analysis, in particular, under differential privacy

(DP). An interesting phenomenon that the literature has identified, is that sampling can amplify the privacy

guarantee of a mechanism, which in turn leads to reduced noise scales that have to be injected.

All existing privacy amplification results only hold in the standard, record-level DP model. Recently, user-

level differential privacy (user-DP) has gained a lot of attention as it protects all data records contributed by any

particular user, thus offering stronger privacy protection. Sampling-based mechanisms under user-DP have not

been explored so far, except naively running the mechanism on a sample without privacy amplification, which

results in large DP noises. In fact, sampling is in even more demand under user-DP, since all state-of-the-art

user-DP mechanisms have high computational costs due to the complex relationships between users and

records. In this paper, we take the first step towards the study of privacy amplification by sampling under

user-DP, and give the amplification results for two common user-DP sampling strategies: simple sampling and

sample-and-explore. The experimental results show that these sampling-based mechanisms can be a useful

tool to obtain some quick and reasonably accurate estimates on large private datasets.
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1 INTRODUCTION
We first recall the definition of differential privacy (DP):

Definition 1.1. Let I denote the set of all database instances and P(Z) the set of probability
distributions overZ. A mechanismM : I → P(Z) maps each instance 𝐼 ∈ I to the distribution

M(𝐼 ), and outputs a random variable drawn fromM(𝐼 ). A mechanismM is said to satisfy (𝜀, 𝛿)-DP
if for any neighboring instances 𝐼 ∼ 𝐼 ′ and any measurable subset 𝑍 ⊆ Z,∫

𝑍

M(𝐼 ) (𝑧)𝑑𝑧 ≤ 𝑒𝜀 ·
∫
𝑍

M(𝐼 ′) (𝑧)𝑑𝑧 + 𝛿.

In the definition above, 𝜀 is the privacy parameter, also called the privacy budget, typically set to

a constant, while 𝛿 should be negligible. Especially, when 𝛿 = 0, the mechanism is said to satisfy

pure DP.
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34:2 Juanru Fang & Ke Yi

Note that this definition is not complete until the neighboring relationship ∼ is specified. Indeed,

it depends on what information should be protected, and different neighboring relationships lead

to different DP models or policies. In the standard DP model, 𝐼 ∼ 𝐼 ′ if one can be obtained from the

other by adding or deleting one record, so this DP model protects the privacy of individual records.

In this model, there is no distinction between “users” and “records”, or equivalently speaking, each

user contributes at most one record. However, the relationship between users and records is more

complicated in many real-world situations: A record may be jointly contributed by a group of users

and a user may contribute to multiple records, and we aim to protect the privacy of individual

users.

1.1 User-level Differential Privacy
In this paper, we adopt the user-DP model introduced in [14], which directly captures the relation-

ship between users and records.

LetU denote the domain of all users and R the domain of data records. An instance 𝐼 = (𝑈 ,𝑉 )
consists of a set of users 𝑈 ⊆ U and a mapping 𝑉 : Uℓ → 2

R
from tuples of ℓ users to sets

of records, representing the data jointly contributed by these users. Specifically, for each tuple

𝑥 = (𝑢1, . . . , 𝑢ℓ ) ∈ Uℓ
, 𝑉 (𝑥) is the set of records contributed by 𝑢1, . . . , 𝑢ℓ in this particular order. It

is required that the 𝑉 (𝑥)’s are pairwise disjoint, and 𝑉 (𝑥) = ∅ if 𝑥 contains a user not in 𝑈 . We

write 𝑢 ∈ 𝑥 if user 𝑢 appears in 𝑥 . Let 𝑅(𝑉 ) = ⋃
𝑥 𝑉 (𝑥) be all the records, 𝑛 = |𝑈 | the number of

users, and𝑚 = |𝑅(𝑉 ) | the total number of records. For any user 𝑢, let 𝑅(𝑉 ,𝑢) = ⋃
𝑥∋𝑢 𝑉 (𝑥) be the

records that are (partly) contributed by user 𝑢.

We can now define the neighboring relationship between instances. For any two instances

𝐼 = (𝑈 ,𝑉 ) and 𝐼 ′ = (𝑈 ′,𝑉 ′), we say that 𝐼 ′ is a sub-instance of 𝐼 , denoted 𝐼 ′ ⪯ 𝐼 , if 𝑈 ′ ⊆ 𝑈 and

𝑉 ′ (𝑥) ⊆ 𝑉 (𝑥) for all 𝑥 . We call 𝐼 ′ a down neighbor of 𝐼 , if 𝐼 ′ can be obtained from 𝐼 by deleting all

or part of the contributions of a user 𝑢∗, called the witness, i.e.,𝑈 \ {𝑢∗} ⊆ 𝑈 ′ ⊆ 𝑈 and

𝑉 ′ (𝑥) ⊊ 𝑉 (𝑥) ⇒ 𝑢∗ ∈ 𝑥 .

Then, 𝐼 and 𝐼 ′ are neighbors if one is a down neighbor of the other, denoted as 𝐼 ∼𝑢∗ 𝐼 ′, where
𝑢∗ is the witness. The distance between 𝐼 and 𝐼 ′, denoted by 𝑑 (𝐼 , 𝐼 ′), is the length of the shortest

sequence (𝐼0 = 𝐼 , 𝐼1, . . . , 𝐼𝑑 = 𝐼 ′) such that 𝐼𝑖−1 ∼ 𝐼𝑖 for all 𝑖 = 1, . . . , 𝑑 .

For ℓ = 1, the model is equivalent to a simple user-DP model used frequently in the machine

learning community [2, 13], where each user contributes multiple records, but they do not jointly

contribute any records. If we further restrict |𝑉 (𝑢) | ∈ {0, 1} for all 𝑢 ∈ U, then the model

degenerates to the standard record-level DP. We are more interested in the ℓ ≥ 2 case, where users

may interact and jointly contribute records.

We also note that the user-DP model adopted in this paper is slightly more general than that

in [14], where 𝑉 maps each unordered set of ℓ users to a set of records. Here, we use ordered

ℓ-tuples, which allow us to handle graphs (both directed and undirected) and relational data easily;

some examples are provided below. Furthermore, for the sampling-based mechanism introduced in

Section 5, the ordered model allows us to sample the users based on their position in the tuples,

which improves privacy amplification and sampling error for certain problems.

1.2 Sum Estimation under User-DP
In this work, we focus on the sum estimation problem under user-DP. In this problem, each record

𝑡 is associated with a weight𝑤 (𝑡), and the query returns the total weight 𝑓 (𝐼 ) = ∑
𝑡 ∈𝑅 (𝑉 ) 𝑤 (𝑡). It

has been shown [10, 14, 23] that by appropriately defining the set of users𝑈 , the mapping 𝑉 , and

the weights𝑤 (·), any select-join-aggregate (SJA) queries with foreign-key constraints [10, 23], as
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well as any subgraph counting problem under node/edge-DP [6, 8, 20, 22, 26, 37], can be framed as

a sum estimation problem in the user-DP model defined above.

Example 1.1. Consider an SJA query on the TPC-H data that computes the total revenue from

all lineitems where the ship date is within the last year and the customer and supplier are within

the same nation. Suppose we wish to protect the privacy of both customers and suppliers. This

query can be captured in our user-DP model as follows. We first perform the (natural) join of

Lineitem, Orders, Customer, Supplier, and Nation. Then set ℓ = 2;𝑈 includes all customers

and suppliers; 𝑉 maps each ordered (𝑐, 𝑠) pair to the set of lineitems that customer 𝑐 purchases

from supplier 𝑠 while meeting the two selection conditions; for each lineitem 𝑡 ,𝑤 (𝑡) is the revenue
from this lineitem. □

This user-DP model also captures subgraph counting problems under both node-DP and edge-DP,

two common DP policies for graph data, as special cases. Given a graph and a pattern that we

want to count, we can construct an instance in our user-DP model as follows: Under node-DP

(resp. edge-DP), set ℓ as the number of nodes (resp. edges) in the pattern;𝑈 includes all nodes (resp.

edges); 𝑉 maps each ordered tuple of ℓ nodes (resp. edges) to a record 𝑡 iff the nodes (resp. edges)

form the pattern in a specific order; for each record 𝑡 , set𝑤 (𝑡) = 1. Then the function 𝑓 (𝐼 ) exactly
returns the number of the patterns in the graph.

Fig. 1. Edge counting under node-DP and triangle counting under edge-DP

Example 1.2. Figure 1 gives two examples: edge counting under node-DP and triangle counting

under edge-DP. For the former, we set ℓ = 2 and take the nodes as the users. Then we set 𝑉 (𝑢, 𝑣) =
{1} iff there is an edge between 𝑢 and 𝑣 and 𝑢 < 𝑣 (assuming each user is identified by a unique

ID). Note that we introduce the condition 𝑢 < 𝑣 to avoid double counting. If the graph is directed,

we just set 𝑉 (𝑢, 𝑣) = {1} for each directed edge (𝑢, 𝑣) without the 𝑢 < 𝑣 restriction. For triangle

counting under edge-DP, we set ℓ = 3 and take the edges as the users. Then we set𝑉 (𝑒, 𝑒′, 𝑒′′) = {1}
iff the three edges 𝑒, 𝑒′, 𝑒′′ form a triangle and 𝑒 < 𝑒′ < 𝑒′′. □

Problems become computationally expensive under user-DP, especially when ℓ ≥ 2. First, the set

of records 𝑅(𝑉 ) is often represented implicitly. For example, in the triangle counting problem, 𝑅(𝑉 )
consists of all triangles in a graph, whose size can be much larger than the size of the graph. For a

relational query, 𝑅(𝑉 ) is all the join results, which can be large for non-key joins. All prior user-

DP mechanisms compute 𝑅(𝑉 ) explicitly, which is the first source of computational inefficiency.

Moreover, each user may contribute to an arbitrary number of records, which makes the sensitivity

(see Section 3.1 for the formal definition) of the query unbounded. A widely used strategy is the

truncation mechanism, i.e., for some truncation threshold 𝐶 , the contributions from any user are

discarded if they exceed 𝐶 . When ℓ = 1, the query after truncation will have sensitivity 𝐶 , so some
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standard DP mechanisms, e.g. the Laplace mechanism, can be applied. However, when ℓ ≥ 2, it

has been shown that this simple truncation mechanism fails to lower the sensitivity [10] due to

the complex relationship between users and records. Therefore, when ℓ ≥ 2, more complicated

algorithms are needed. These mechanisms either solve a larger number of linear programs [8, 10, 14]

or compute a complex smooth sensitivity [22, 26], both of which incur a high computational cost.

1.3 Sampling and Privacy Amplification
Since the output of any DP mechanismM(𝐼 ) must be randomized and approximate, there is no

point insisting thatM(𝐼 ) should be computed exactly. Thus, random sampling has been widely

used to reduce the computational cost ofM(𝐼 ). In fact, for many problems, e.g., approximate query

processing, stochastic gradient descent, and statistical estimation, random sampling is a common

practice even if privacy is not a concern.

However, when we runM on a sample of 𝐼 , the DP noise gets amplified. Specifically, when

the sample is taken with probability 𝜂, we need to scale back the output ofM by a factor of
1

𝜂

(this factor can be even larger under user-DP; see Section 4), which also amplifies the DP noise

by a factor of
1

𝜂
. Interestingly, in recent years, the literature has observed that this scaling back

of DP noise can be avoided. More formally, let S : I → P(I) be a sampling strategy andM
an (𝜀, 𝛿)-DP mechanism, we denoteMS : I → P(Z) as the mechanism running on a sample

produced by S. Then, it has been shown thatMS satisfies (𝜀′ = Θ(𝜂𝜀), 𝛿 ′)-DP (assuming 𝜀 < 𝑂 (1)).
This phenomenon is known as privacy amplification, as the privacy parameter has decreased, hence

better privacy, from 𝜀 to 𝜀′ = Θ(𝜂𝜀) after sampling. Conversely, if the given privacy budget is 𝜀′, we
can runM with parameter 𝜀 = Θ( 𝜀′

𝜂
). Since for most mechanisms (e.g., the Laplace mechanism), the

DP noise is inversely proportional to the privacy parameter, this means that the DP noise injected

toMS can be a factor-( 1

𝜂
) smaller, which precisely cancels the effect of the noise amplification

during the scaling back. The total error ofMS is thus the sampling error, which is unrelated to

privacy, plus a DP noise whose scale is the same as that injected byM running on the full dataset.

Privacy amplification is therefore an important tool to get the performance boost from the sampling

without sacrificing the utility (of the DP part).

1.4 Our Results
However, all past work on privacy amplification by sampling has only studied the standard, record-

level DP model. In this paper, we take the first step towards investigating how much privacy can

be amplified by sampling under user-DP.

A direct migration from record-level DP sampling to user-level DP is to sample the users,

i.e., we first randomly sample a subset 𝑈𝑠 of users from 𝑈 , and construct the sampled instance

𝐼 |𝑈𝑠
= (𝑈𝑠 ,𝑉|𝑈𝑠

), where𝑉|𝑈𝑠
consists of all records contributed by𝑈𝑠 . Then we feed 𝐼 |𝑈𝑠

to a user-DP

mechanismM. For example, the triangle count can be estimated by sampling a set of nodes𝑈𝑠 and

counting the number of triangles in the subgraph induced by 𝑈𝑠 . In Section 4, we first study the

privacy amplification effect of this simple sampling strategy. For this case, we obtain a result similar

to the standard privacy amplification result, i.e., the sampled mechanismMS satisfies (𝜀′, 𝛿 ′)-DP
for 𝜀′ = Θ(𝜂𝜀).

Unfortunately, the amount of privacy amplification is not sufficient to cancel the noise amplifica-

tion, because the scaling-back factor becomes
1

𝜂ℓ
under user-DP. Thus, the DP noise is still amplified

by a factor of
1

𝜂ℓ−1
. In addition, even in the non-private setting, simple sampling is known to have

large sampling errors, and the literature has identified many more accurate sampling methods,

mostly for graph data.
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The main technical result of this paper is a method called sample-and-explore, which can be

considered as an extension of a popular graph sampling method to user-DP. It first samples one

user and then takes all the neighboring users (i.e., those with joint contributions) into the sampled

instance. Intuitively, this sampling method is much better than simple sampling as it is more focused

and ensures that all users sampled are useful; technically, it is better as its scaling-back factor does

not depend on ℓ . However, it introduces challenges to the privacy amplification analysis, since the

users are no longer sampled independently: There is a high correlation between neighboring users,

which must be taken into consideration in the privacy amplification analysis.

Section 5 contains our main privacy amplification result for sample-and-explore. We first analyze

the case where a single user is sampled, for which we show that the privacy parameter can be

reduced by roughly a factor of
𝜏
𝑛
, where 𝜏 is an upper bound on the number of neighbors a

user may have. Then we use advanced composition to extend it to the case where 𝑘 users are

sampled. The final result implies that the DP noise is amplified by a factor of 𝑂 (𝜏 ·
√︁

log(1/𝛿)).
Thus, it significantly improves that of simple sampling and sample-and-explore without privacy

amplification. However, it does not quite match the amplification result from record-level DP, where

the DP noise remains the same as without sampling. But this is intuitively inherent: The extra 𝜏

accounts for the correlation between users under the user-DP model, while the

√︁
log(1/𝛿) factor

roots from the advanced composition.

In Section 6, we conduct an extensive set of experiments on subgraph counting queries under

node-DP, as well as relational queries on TPC-H data. The results show that the sampling-based

mechanisms can significantly reduce the running time of existing mechanisms that run on full

datasets, by 10
4
to 10

6
times. The trade-off is, of course, that the sampling methods incur a higher

error, mostly the sampling error, as the DP noise has been greatly reduced by our privacy amplifi-

cation analysis. Thus, the sampling-based mechanisms can be a useful tool to obtain some quick

estimates on a large private dataset, before a (much) more expensive mechanism should be invoked

on the full dataset.

2 RELATEDWORK
The study of user-DP began with the simple case where ℓ = 1 [2, 23, 30, 35]. The existing works have

studied problems like sum estimation, quantile estimation, machine learning, etc. For the case ℓ ≥ 2,

[10] studies the sum estimation problem, and [14] extends it to estimating any monotonic function.

Due to the correlation between the users, linear programming is often needed in these mechanisms,

resulting in long running times. Node-DP and edge-DP are two special cases of user-DP, which

have been extensively studied [6, 8, 9, 22, 26, 27, 37], but none of them has considered the sampling

amplification issue.

Privacy amplification by sampling under record-level DP has been studied since 2008 [21]. Balle

et al. [3] analyze the privacy amplification results for Poisson sampling and sampling with/without

replacement under (𝜀, 𝛿)-DP. For Renyi DP, privacy amplification for Poisson sampling [1, 25, 38]

and sampling without replacement [34] is also well studied. Bun et al. [7], on the other hand, focuses

on concentrated DP and analyzes the amplification results for Poisson sampling. However, due to

the correlation between users, these results do not hold under user-DP.

Besides sampling, other techniques that can achieve privacy amplification include shuffling [15,

16, 32], iteration [17], stochastic post-processing [4], etc. It would be interesting to consider their

counterparts in the user-DP model as well.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 34. Publication date: February 2024.



34:6 Juanru Fang & Ke Yi

3 PRELIMINARIES
3.1 Differential Privacy
Definition 1.1 is not convenient for privacy amplification analyses. Belowwe introduce an equivalent

definition of DP in terms of 𝛼-divergences. For some 𝛼 ≥ 1, the 𝛼-divergence between two

probability distributions 𝜇, 𝜇′ ∈ P(Z) is

𝐷𝛼 (𝜇 | |𝜇′) =
∫
Z

max

(
𝑑𝜇

𝑑𝜇′
(𝑧) − 𝛼, 0)

)
𝑑𝜇′ (𝑧),

where
𝑑𝜇

𝑑𝜇′ is the Radon-Nikodym derivative. IfZ is a discrete space, it can be simplified to

𝐷𝛼 (𝜇 | |𝜇′) =
∑︁
𝐼 ∈I

max(𝜇 (𝐼 ) − 𝛼𝜇′ (𝐼 ), 0).

The following definition has been shown to be equivalent to Definition 1.1 [5]:

Definition 3.1. Let 𝛿M (𝜀) = sup𝐼∼𝐼 ′ 𝐷𝑒𝜀 (M(𝐼 )∥M(𝐼 ′)) denote the privacy profile ofM at 𝜀. A

mechanismM is (𝜀, 𝛿)-DP if 𝛿M (𝜀) ≤ 𝛿 .

We further use 𝛿M,𝑘 (𝜀) = sup𝑑 (𝐼 ,𝐼 ′ )≤𝑘 𝐷𝑒𝜀 (M(𝐼 )∥M(𝐼 ′)) to denote the 𝑘-th group privacy profile
ofM at 𝜀. Note that 𝛿M,0 (𝜀) = 0, 𝛿M,1 (𝜀) = 𝛿M (𝜀). For any 𝑘 ≥ 1, we always have

𝛿M,𝑘 (𝜀) ≤
𝑒𝜀 − 1

𝑒
𝜀
𝑘 − 1

· 𝛿M
( 𝜀
𝑘

)
.

The following are some important properties of DP [12]:

Lemma3.2 (Composition). Given (𝜀, 𝛿)-DPmechanismsM1, . . . ,M𝑘 , themechanismM = (M1, . . . ,M𝑘 )
satisfies (𝑘𝜀, 𝑘𝛿)-DP. Furthermore, for any 𝛿0 > 0,M also satisfies (𝜀′, 𝑘𝛿 + 𝛿0)-DP for

𝜀′ =

√︄
2𝑘 ln

(
1

𝛿0

)
· 𝜀 + 𝑘𝜀 (𝑒𝜀 − 1).

Lemma 3.3 (Post-processing). Given an (𝜀, 𝛿)-DP mechanismM, any post-processing on the output
ofM still preserves (𝜀, 𝛿)-DP.

For any function 𝑓 : I → R, define its (global) sensitivity GS𝑓 = sup𝐼∼𝐼 ′ |𝑓 (𝐼 ) − 𝑓 (𝐼 ′) |.

Lemma 3.4 (Laplace Mechanism). Given an instance 𝐼 , the Laplace mechanism outputs

M(𝐼 ) = 𝑓 (𝐼 ) + GS𝑓 · Lap( 1
𝜀
),

where Lap(𝑏) is the Laplace distribution centered at 0 with scale 𝑏, and the mechanism preserves pure
𝜀-DP.

3.2 Privacy Amplification
Let S be a sampling procedure,M an (𝜀, 𝛿)-DP mechanism. We useMS to denote runningM on

a sample returned from S. Let𝑀 be the Markov kernel associated with the mechanismM, and let

TV(𝜇, 𝜇′) = 1 −
∑̄︁
𝐼 ∈I

min(𝜇 (𝐼 ), 𝜇′ (𝐼 ))

denote the total variation distance between two probability distributions 𝜇, 𝜇′ ∈ P(I). The privacy
amplification framework from [3] can be summarized as follows.
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Lemma 3.5 ([3]). Let 𝐼 ∼ 𝐼 ′ be any two neighboring instances. For any TV(S(𝐼 ),S(𝐼 ′)) ≤ 𝜂 ≤ 1,
there exist distributions 𝜔0, 𝜔1, 𝜔

′
1
∈ P(I) such that

S(𝐼 ) = (1 − 𝜂) · 𝜔0 + 𝜂 · 𝜔1, (1)

S(𝐼 ′) = (1 − 𝜂) · 𝜔0 + 𝜂 · 𝜔 ′1 . (2)

Furthermore,

𝐷𝑒𝜀
′ (MS (𝐼 ) | |MS (𝐼 ′)) ≤(1 − 𝑒𝜀′−𝜀) · 𝜂 · 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) + 𝑒𝜀

′−𝜀 · 𝜂 · 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀), (3)

for 𝜀′ = ln(1 + 𝜂 · (𝑒𝜀 − 1)).

Together with Definition 3.1, the lemma above implies that the privacy parameter 𝜀 can be

reduced (privacy is amplified) to 𝜀′, if we can decompose S(𝐼 ),S(𝐼 ′) as in (1), (2) so that (3) is

negligible. The amount of amplification directly depends on 𝜂; in particular, for 𝜀 < 𝑂 (1), we have
𝜀′ = Θ(𝜂𝜀).

In order to bound (3), we need to bound𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) and𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀). This is done using
a technique called coupling. A coupling between 𝜔1 and 𝜔0 is a distribution 𝜋 ∈ P(I × I) whose
marginal distributions are 𝜔1 and 𝜔0, respectively.

Lemma 3.6 ([3]). For any coupling 𝜋 between 𝜔1 and 𝜔0 and any DP mechanismM,

𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) ≤
∑︁
𝐼1,𝐼0

𝜋 (𝐼1, 𝐼0) · 𝐷𝑒𝜀 (M(𝐼1) | |M(𝐼0))

≤
∑︁
𝐼1,𝐼0

𝜋 (𝐼1, 𝐼0) · 𝛿M,𝑑 (𝐼1,𝐼0 ) (𝜀). (4)

Then we replace 𝜔0 by 𝜔
′
1
in Lemma 3.6 to bound 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀) using any coupling between

𝜔1 and 𝜔 ′
1
. Note that (4) ranges over all 𝐼1, 𝐼0 such that 𝜋 (𝐼1, 𝐼0) > 0, so it is not necessary that

𝐼1 ∼ 𝐼0. But a good coupling should pair up 𝐼1, 𝐼0 such that 𝑑 (𝐼1, 𝐼0) is small so as to minimize (4).

4 PRIVACY AMPLIFICATION BY SIMPLE SAMPLING
As a warm-up, we first apply the privacy amplification framework above to the analysis of a

simple sampling strategy S under user-DP, where each user 𝑢 ∈ 𝑈 is sampled independently with

probability 𝜂. Let𝑈𝑠 ⊆ 𝑈 denote the set of sampled users. The sub-instance of 𝐼 induced by𝑈𝑠 is

𝐼 |𝑈𝑠
= (𝑈𝑠 ,𝑉|𝑈𝑠

), where

𝑉|𝑈𝑠
(𝑥) =

{
𝑉 (𝑥), if ∀𝑢 ∈ 𝑥,𝑢 ∈ 𝑈𝑠

∅, otherwise.

Namely, 𝑉|𝑈𝑠
consists of all records contributed by users in𝑈𝑠 . Then, we feed 𝐼 |𝑈𝑠

to some user-DP

mechanismM. The output ofM(𝐼 |𝑈𝑠
) should be appropriately post-processed to obtain a good

estimate of 𝑓 (𝑅(𝑉 )).

Example 4.1. For the triangle counting problem under node-DP, this sampling strategy is precisely

the subgraph sampling algorithm described in [31, 36], where each node is sampled to 𝑈𝑠 with

probability 𝜂. Then we count the number of triangles in the subgraph 𝐼 |𝑈𝑠
induced by the sampled

nodes using some node-DP mechanismM [6, 10, 11, 37]. Since each triangle appears in 𝐼 |𝑈𝑠
with

probability 𝜂3
, we need to scale the output ofM(𝐼 |𝑈𝑠

) back by a factor of
1

𝜂3
. Edge-DP can be

similarly handled by sampling the edges instead of nodes. □
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4.1 Privacy Amplification
Without privacy amplification, the DP noise injected toM(𝐼 |𝑈𝑠

) is in general multiplied by a factor

of
1

𝜂ℓ
during the scaling back. Below we show how this can be mitigated by privacy amplification.

We need to apply Lemma 3.5 and 3.6 on every two neighboring instances 𝐼 ∼ 𝐼 ′. First, consider
the case where 𝐼 ′ ⪯ 𝐼 , and let 𝑢∗ denote the witness. We observe the following properties of 𝐼 |𝑈𝑠

:

For any set of sampled users𝑈𝑠 ,

(1) if 𝑢∗ ∉ 𝑈𝑠 , then 𝐼 |𝑈𝑠
⪯ 𝐼 ′;

(2) if 𝐼 |𝑈𝑠
⪯ 𝐼 ′, then 𝐼 |𝑈𝑠

= 𝐼 ′|𝑈𝑠
, otherwise, S(𝐼 ′) (𝐼 |𝑈𝑠

) = 0.

These properties imply that the common support of S(𝐼 ) and S(𝐼 ′) must be the sub-instances of

𝐼 ′. In addition, for each 𝐼 ⪯ 𝐼 ′, we have S(𝐼 ) (𝐼 ) ≤ S(𝐼 ′) (𝐼 ). This is because, by property (2), any set

of sampled users𝑈𝑠 such that 𝐼 |𝑈𝑠
= 𝐼 also lead to 𝐼 ′|𝑈𝑠

= 𝐼 . This allows us to bound TV(S(𝐼 ),S(𝐼 ′)):

TV(S(𝐼 ),S(𝐼 ′)) =1 −
∑̄︁
𝐼 ∈I

min(S(𝐼 ) (𝐼 ),S(𝐼 ′) (𝐼 ))

=1 −
∑̄︁
𝐼⪯𝐼 ′
S(𝐼 ) (𝐼 )

≤1 − Pr[𝑢∗ ∉ 𝑈𝑠 ]
=𝜂

Next, we decompose S(𝐼 ) and S(𝐼 ′) as in (1), (2). Let 𝜐 (𝑈𝑠 ) be the sampling probability of 𝑈𝑠

over𝑈 , i.e.,

𝜐 (𝑈𝑠 ) = 𝜂 |𝑈𝑠 | (1 − 𝜂) |𝑈 |− |𝑈𝑠 | .

Then we define 𝜔0 by setting

𝜔0 (𝐼 ) =
1

1 − 𝜂 ·
∑︁

𝑈𝑠 :𝑢∗∉𝑈𝑠 ,𝐼 |𝑈𝑠 =𝐼

𝜐 (𝑈𝑠 )

=
1

1 − 𝜂 ·
∑︁

𝑈𝑠 :𝑢∗∉𝑈𝑠 ,𝐼
′
|𝑈𝑠

=𝐼

𝜐 (𝑈𝑠 )

for every 𝐼 ∈ I. The second equality is due to the two properties above, namely, when 𝑢∗ is not
sampled, the induced sub-instances 𝐼 |𝑈𝑠

and 𝐼 ′|𝑈𝑠
are the same. The other two distributions 𝜔1, 𝜔

′
1

then follow from 𝜔0 and (1), (2), i.e.,

𝜔1 (𝐼 ) =
1

𝜂
·

∑︁
𝑈𝑠 :𝑢∗∈𝑈𝑠 ,𝐼 |𝑈𝑠 =𝐼

𝜐 (𝑈𝑠 ),

𝜔 ′
1
(𝐼 ) = 1

𝜂
·

∑︁
𝑈𝑠 :𝑢∗∈𝑈𝑠 ,𝐼

′
|𝑈𝑠∩𝑈 ′

=𝐼

𝜐 (𝑈𝑠 ).

Example 4.2. Consider the triangle counting problem under node-DP. Let 𝐼 ′ be a down neighbor

of 𝐼 with witness 𝑢∗, namely, all extra triangles in 𝐼 involve 𝑢∗. The three distributions above are as
follows:

• 𝜔0 samples each node in 𝑈 \ {𝑢∗} with probability 𝜂 and constructs the induced subgraph of

𝐼 ′ on the sampled nodes.

• 𝜔1 samples each node in𝑈 \ {𝑢∗} with probability 𝜂, adds 𝑢∗ to the sample and constructs

the induced subgraph of 𝐼 .
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• 𝜔 ′
1
samples each node in𝑈 \ {𝑢∗} with probability 𝜂, adds 𝑢∗ to the sample and constructs

the induced subgraph of 𝐼 ′. □

Next, we bound 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀). We can construct a coupling 𝜋 between 𝜔1 and 𝜔0 iteratively

as follows. We initialize 𝜋 (𝐼1, 𝐼0) = 0 for any pair of samples 𝐼1, 𝐼0. Next, we go through all sets of

users𝑈𝑠 ⊆ 𝑈 \ {𝑢∗} and increase 𝜋 (𝐼 |𝑈𝑠∪{𝑢∗ }, 𝐼 |𝑈𝑠
) by

1

𝜂
· 𝜐 (𝑈𝑠 ∪ {𝑢∗}) =

1

1 − 𝜂 · 𝜐 (𝑈𝑠 ).

It can be verified that 𝜋 is a valid coupling. Moreover, from the construction process, we can see

that if 𝜋 (𝐼1, 𝐼0) > 0, we have 𝑑 (𝐼1, 𝐼0) ≤ 1 since the witness 𝑢∗ is the only different user such

that all different records, if there are any, are contributed by 𝑢∗. Then by Lemma 3.6, we have

𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) ≤ 𝛿M (𝜀).

Example 4.3. Continuing with the example above, the coupling 𝜋 corresponds to the following

random process that produces (𝐼1, 𝐼0) ∈ I × I: Take each node in 𝑈 \ {𝑢∗} into the sample 𝑈𝑠

with probability 𝜂 independently. Then set 𝐼0 as the subgraph of 𝐼 ′ induced by 𝑈𝑠 , and 𝐼1 as the

subgraph of 𝐼 induced by𝑈𝑠 ∪ {𝑢∗}. It is easy to see that the marginal distributions of 𝜋 are 𝜔1 and

𝜔0, respectively, and any 𝐼1, 𝐼0 coupled together (i.e., 𝜋 (𝐼1, 𝐼0) > 0) only differ in 𝑢∗. □

For 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀), we can construct a coupling 𝜋 similarly: We initialize 𝜋 (𝐼1, 𝐼 ′1) = 0 for any

pair of samples 𝐼1, 𝐼
′
1
. Next, we go through all sets of users𝑈𝑠 ⊆ 𝑈 such that 𝑢∗ ∈ 𝑈𝑠 , and increase

𝜋 (𝐼 |𝑈𝑠
, 𝐼 ′|𝑈𝑠∩𝑈 ′ ) by

1

𝜂
·𝜐 (𝑈𝑠 ). Any 𝐼1, 𝐼 ′1 coupled together still have𝑑 (𝐼1, 𝐼 ′1) ≤ 1. Thus, we can conclude

𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀) ≤ 𝛿M (𝜀). Then by Lemma 3.5, we obtain 𝐷𝑒𝜀
′ (MS (𝐼 ) | |MS (𝐼 ′)) ≤ 𝜂 · 𝛿M (𝜀).

Example 4.4. The coupling between 𝜔1 and 𝜔 ′
1
corresponds to the following random process

that produces (𝐼1, 𝐼 ′1) ∈ I × I: Take each node in 𝑈 \ {𝑢∗} into the sample 𝑈𝑠 with probability 𝜂

independently. Then set 𝐼1 as the subgraph of 𝐼 induced by𝑈𝑠 ∪ {𝑢∗}, set 𝐼 ′1 as the subgraph of 𝐼 ′

induced by𝑈𝑠 ∪ {𝑢∗}. □

For the other case where 𝐼 ⪯ 𝐼 ′, the decomposition is symmetric. More specifically, we now

sample a set of users𝑈𝑠 ⊆ 𝑈 ′, and the decomposition looks as follows. Let 𝜐 (𝑈𝑠 ) be the sampling

probability of𝑈𝑠 over𝑈
′
, we have

𝜔0 (𝐼 ) =
1

1 − 𝜂 ·
∑︁

𝑈𝑠 :𝑢∗∉𝑈𝑠 ,𝐼
′
|𝑈𝑠

=𝐼

𝜐 (𝑈𝑠 ) =
1

1 − 𝜂 ·
∑︁

𝑈𝑠 :𝑢∗∉𝑈𝑠 ,𝐼 |𝑈𝑠 =𝐼

𝜐 (𝑈𝑠 ),

𝜔1 (𝐼 ) =
1

𝜂
·

∑︁
𝑈𝑠 :𝑢∗∈𝑈𝑠 ,𝐼 |𝑈𝑠∩𝑈 =𝐼

𝜐 (𝑈𝑠 ), 𝜔 ′1 (𝐼 ) =
1

𝜂
·

∑︁
𝑈𝑠 :𝑢∗∈𝑈𝑠 ,𝐼

′
|𝑈𝑠

=𝐼

𝜐 (𝑈𝑠 ).

The analyses for 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) and 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀) are the same as above. So we conclude with

the following privacy amplification result:

Theorem 4.1. For the simple sampling strategy S and any (𝜀, 𝛿)-DP mechanismM,MS satisfies
(𝜀′, 𝛿 ′)-DP, where

𝜀′ = ln(1 + 𝜂 · (𝑒𝜀 − 1)),
𝛿 ′ = 𝜂 · 𝛿.
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... ...

Fig. 2. Triangle counting in a sparse graph.

4.2 Error Analysis
Recall that the error inMS consists of two parts: the sampling error and the DP noise. Theorem 4.1

implies that, given a privacy budget of (𝜀′, 𝛿 ′), we can invokeM with privacy parameter 𝜀 ≈
𝜀′/𝜂, 𝛿 = 𝛿 ′/𝜂. Thus, the DP noise after scaling back is

1

𝜂ℓ
· NoiseM

(
𝜀′

𝜂
,
𝛿 ′

𝜂

)
≈ 1

𝜂ℓ
· 𝜂 · NoiseM (𝜀′, 𝛿 ′) =

1

𝜂ℓ−1
· NoiseM (𝜀′, 𝛿 ′), (5)

where NoiseM (𝜀′, 𝛿 ′) denotes the DP noise injected byM with privacy parameter (𝜀′, 𝛿 ′).
The analysis of the sampling error, which is unrelated to privacy, is detailed in [33, 36]. It depends

on certain properties of the instance and can be very large on sparse instances.

Example 4.5. Consider the triangle counting problem on the instance in Figure 2. Since each of

the 𝑛/3 triangles is sampled with probability 𝜂3
, the variance of the triangle count in the sample is

𝑂 (𝜂3 · 𝑛), or an error of 𝑂 (𝜂1.5 ·
√
𝑛). After scaling back, the sampling error becomes 𝑂 (

√
𝑛/𝜂1.5),

which turns into 𝑂 (
√
𝑛/𝜂ℓ/2) for a graph pattern with ℓ nodes, e.g., an ℓ-cycle. □

Besides Bernoulli sampling, other variants of simple sampling, such as taking a sample of size

𝜂 ·𝑛 without replacement, have also been considered in [31, 36]. The privacy amplification analyses

for these variants are technical, while the results are not as clean as Theorem 4.1, hence omitted.

Most importantly, all of them have high sampling errors and DP noises.

5 PRIVACY AMPLIFICATION BY SAMPLE-AND-EXPLORE
The intuitive reason why simple sampling has high errors (both sampling error and DP noise),

especially for large ℓ and on sparse instances as Example 4.5 illustrates, is that the probability

of forming a record (e.g., a triangle) by blindly sampling the users is very low. For the subgraph

counting problem, there are many methods with much better accuracy [24, 29, 36], all of which take

a sample-and-explore approach. We adopt one version of it and extend it to user-DP, as follows.

5.1 Sample-and-explore under User-DP
We first consider the simple case where only one user𝑢𝑠 is sampled uniformly from𝑈 . We construct

the induced sub-instance 𝐼 |𝑢𝑠 = (𝑈 |𝑢𝑠 ,𝑉|𝑢𝑠 ) where
𝑈 |𝑢𝑠 = {𝑢 ∈ 𝑈 | ∃𝑥 = (𝑢𝑠 , . . . ), 𝑢 ∈ 𝑥,𝑉 (𝑥) ≠ ∅},

and

𝑉|𝑢𝑠 (𝑥) =
{
𝑉 (𝑥), if 𝑥 = (𝑢𝑠 , . . . );
∅, otherwise.

Namely,𝑉|𝑢𝑠 consists of all records for which 𝑢𝑠 is the first contributing user, while the user set𝑈 |𝑢𝑠
includes all involved users. To improve accuracy, this can be repeated, as illustrated in Section 5.3.
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Example 5.1. For the triangle counting problem under node-DP, the sample-and-explore strategy

instantiates into the following: First sample a random node 𝑢𝑠 . Then take all the triangles where

𝑢𝑠 is the smallest node (in terms of user id) into 𝐼 |𝑢𝑠 . Because each triangle appears in 𝐼 |𝑢𝑠 with
probability 1/𝑛, we scale the triangle count in 𝐼 |𝑢𝑠 back by a factor of 𝑛.

On the instance in Figure 2, the number of triangles in 𝐼 |𝑢𝑠 is 1 with probability 1/3 (when one of

the 𝑛/3 nodes at the top of the triangles is sampled) and 0 with probability 2/3. Thus, the variance
of the sample count is 𝑂 (1). After scaling back, this translates into a sampling error of 𝑂 (𝑛). This
does not appear to be much smaller than that of simple sampling in Example 4.5. However, we

have only sampled one user so far. We will later extend it to sampling multiple users, which will

reduce the sampling error significantly. □

5.2 Privacy Amplification
We first analyze the privacy amplification for sampling a single user. Given an instance 𝐼 = (𝑈 ,𝑉 ),
for any user 𝑢 ∈ 𝑈 , we say that another user 𝑢′ is a neighbor of 𝑢 if there is an 𝑥 = (𝑢, . . . ) ∈ 𝑈 ℓ

such that 𝑢′ ∈ 𝑥 , and 𝑉 (𝑥) ≠ ∅. Thus, sampling 𝑢 causes 𝑢′ to be also taken into the sample. Note

that this neighboring relationship is defined between users in a given instance 𝐼 , and should not be

confused with the neighboring relationship between two instances.

Let Λ(𝐼 , 𝑢) denote the set of neighbors of 𝑢 on 𝐼 . We will need an upper bound 𝜏 on |Λ(𝐼 , 𝑢) |
for any user 𝑢 ∈ U and any instance 𝐼 ∈ I. For the problem of triangle counting, two nodes are

neighbors if they appear in the same triangle, so they must be connected by an edge. Thus, we may

use the degree upper bound as 𝜏 .

Now we analyze the privacy amplification for the sample-and-explore strategy S. Let 𝐼 ∼𝑢∗ 𝐼 ′ be
any two neighboring instances. We first consider the case where 𝐼 ′ ⪯ 𝐼 . As in simple sampling, we

observe that similar properties also hold for 𝐼 |𝑢𝑠 . Specifically, for any sampled user 𝑢𝑠 ,

(1) if 𝑢𝑠 ∉ Λ(𝐼 , 𝑢∗), then 𝐼 |𝑢𝑠 ⪯ 𝐼 ′;
(2) if 𝐼 |𝑢𝑠 ⪯ 𝐼 ′, then 𝐼 |𝑢𝑠 = 𝐼 ′|𝑢𝑠 , otherwise, S(𝐼

′) (𝐼 |𝑢𝑠 ) = 0.

Thus, we can still conclude that the common support ofS(𝐼 ) andS(𝐼 ′)must be the set {𝐼 : 𝐼 ⪯ 𝐼 ′},
and for any instance 𝐼 ⪯ 𝐼 ′, S(𝐼 ) (𝐼 ) ≤ S(𝐼 ′) (𝐼 ). The total variation distance is thus

TV(S(𝐼 ),S(𝐼 ′)) =1 −
∑̄︁
𝐼 ∈I

min(S(𝐼 ) (𝐼 ),S(𝐼 ′) (𝐼 ))

=1 −
∑̄︁
𝐼⪯𝐼 ′
S(𝐼 ) (𝐼 )

≤1 − Pr[𝑢𝑠 ∉ Λ(𝐼 , 𝑢∗)]

≤ 𝜏
𝑛

We thus set 𝜂 = 𝜏
𝑛
.

We now construct the decomposition of S(I) and S(I′). We add more users to Λ(𝐼 , 𝑢∗) to
obtain a set of 𝜏 users including all neighbors of 𝑢. Let Λ𝜏 (𝐼 , 𝑢∗) be the resulting set of users. Let
𝑛′ = |𝑈 ′ |. We have 𝑛′ ≤ 𝑛 when 𝐼 ′ ⪯ 𝐼 . Let 𝜐 and 𝜐′ denote the sampling distribution of 𝑢𝑠 on 𝐼 and

𝐼 ′ respectively, i.e.,

𝜐 (𝑢𝑠 ) =
1

𝑛
and 𝜐′ (𝑢𝑠 ) =

{
1

𝑛′ , if 𝑢𝑠 ∈ 𝑈 ′,
0, otherwise.
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Fig. 3. Decomposition of S(𝐼 ) and S(𝐼 ′) on example instances for triangle counting.

For any sample 𝐼 ∈ I, we set

𝜔0 (𝐼 ) =
1

1 − 𝜂 ·
∑︁

𝑢𝑠 :𝑢𝑠∉Λ𝜏 (𝐼 ,𝑢∗ ),𝐼 |𝑢𝑠 =𝐼
𝜐 (𝑢𝑠 ).

Then 𝜔1 and 𝜔
′
1
can be set accordingly, namely,

𝜔1 (𝐼 ) =
1

𝜂
·

∑︁
𝑢𝑠 :𝑢𝑠 ∈Λ𝜏 (𝐼 ,𝑢∗ ),𝐼 |𝑢𝑠 =𝐼

𝜐 (𝑢𝑠 ),

𝜔 ′
1
(𝐼 ) = 1

𝜂
·

∑︁
𝑢𝑠 :𝑢𝑠 ∈𝑈 ′,𝑢𝑠 ∈Λ𝜏 (𝐼 ,𝑢∗ ),𝐼 ′|𝑢𝑠 =𝐼

𝜐′ (𝑢𝑠 )

+ 1

𝜂
·

∑︁
𝑢𝑠 :𝑢𝑠 ∈𝑈 ′,𝑢𝑠∉Λ𝜏 (𝐼 ,𝑢∗ ),𝐼 ′|𝑢𝑠 =𝐼

(𝜐′ (𝑢𝑠 ) − 𝜐 (𝑢𝑠 )) .

Example 5.2. Consider the triangle counting problem under node-DP on the two instances

𝐼 and 𝐼 ′ in Figure 3, where 𝑢∗ = 𝑢′
6
, 𝑛 = 6, and 𝑛′ = 5. Assume 𝜏 = 3 so that 𝜂 = 1

2
and

Λ𝜏 (𝐼 , 𝑢∗) = Λ(𝐼 , 𝑢∗) = {𝑢3, 𝑢4, 𝑢6}. All samples in 𝜔0, 𝜔1, 𝜔
′
1
with nonzero probabilities are shown

in the figure. □

Next, we analyze 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) and 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀). For both cases, we can use an arbitrary

coupling 𝜋 , because every possible sample has only contributions from one user. It is tempting to

claim that any two samples have a distance of 2, but this is not true, strictly speaking. For example,

consider 𝐼 |𝑢3
in the support of 𝜔1 and 𝐼 |𝑢1

in the support of 𝜔0 in Figure 3. To change the former

into the latter, we delete 𝑢3 and all its contributions (the two triangles involving 𝑢3) and then add 𝑢1

and its contributions (the two triangles involving 𝑢1). However, this is not all. After deleting 𝑢3 and

the two triangles involving 𝑢3, we still have singleton nodes 𝑢1, 𝑢4, 𝑢6 left. The node 𝑢6 will need to

be deleted in a separate step. Also, before adding the two triangles involving 𝑢1, the node 𝑢2 has to

be added. Thus, we have 𝑑 (𝐼 |𝑢3
, 𝐼 |𝑢1
) = 4, which can be larger if 𝑢1 and 𝑢3 have larger degrees.
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To address the issue, we introduce a mild assumption on the mechanismM, that it does not

depend on these singleton nodes, or more generally, users without contributions. This is reasonable

as in our user-DP model, the goal is to approximate a function 𝑓 (𝐼 ) = 𝑓 (𝑅(𝑉 )), where 𝑅(𝑉 ) does
not depend on users without contributions. However, asM may behave arbitrarily (it may not try

to approximate 𝑓 (𝑅(𝑉 )) at all), we still need this condition for the privacy amplification analysis.

Under this assumption,𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) and𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀) are both bounded by 𝛿M,2 (𝜀) under
an arbitrary coupling. Then by Lemma 3.5, we have

𝐷𝑒𝜀
′ (MS (𝐼 ) | |MS (𝐼 ′)) ≤ 𝜂 · 𝛿M,2 (𝜀).

The analysis for the other case 𝐼 ⪯ 𝐼 ′ is similar. The total variation distance is

TV(S(𝐼 ),S(𝐼 ′)) =1 −
∑̄︁
𝐼 ∈I

min(S(𝐼 ) (𝐼 ),S(𝐼 ′) (𝐼 ))

=1 −
∑̄︁
𝐼⪯𝐼
S(𝐼 ′) (𝐼 )

≤1 − Pr[𝑢𝑠 ∉ Λ(𝐼 ′, 𝑢∗)]

≤ 𝜏

𝑛′
.

Let 𝜂′ = 𝜏
𝑛′ . We can decompose the distributions S(𝐼 ) and S(𝐼 ′) into 𝜔0, 𝜔1 and 𝜔

′
1
as in (1) and

(2). The remaining proofs are the same, and we can replace 𝜂 with 𝜂′ to get the upper bounds

for 𝐷𝑒𝜀 (𝜔1𝑀,𝜔0𝑀) and 𝐷𝑒𝜀 (𝜔1𝑀,𝜔 ′
1
𝑀). Note that we have 𝑛 ≤ 𝑛′ when 𝐼 ⪯ 𝐼 ′, so 𝜂′ ≤ 𝜂, and

𝐷𝑒𝜀
′ (MS (𝐼 ) | |MS (𝐼 ′)) can also be bounded by 𝜂 · 𝛿M,2 (𝜀).

Theorem 5.1. For the single sample-and-explore strategy S and any (𝜀, 𝛿)-DP mechanismM that
does not depend on users without contributions,MS satisfies (𝜀′

1
, 𝛿 ′

1
)-DP, where

𝜀′
1
= ln

(
1 + 𝜏

𝑛
· (𝑒𝜀 − 1)

)
,

𝛿 ′
1
=
𝜏

𝑛
· 𝛿M,2 (𝜀).

One potential problem is 𝛿M,2 (𝜀), hence 𝛿 ′1, may not be negligible, even if 𝛿 = 𝛿M (𝜀) is. This
problem can be fixed as follows. We viewM as a (2𝜀, 𝛿)-DP mechanismM′ satisfying 𝛿M′ (𝜀) ≤ 𝛿 .

Then we apply Theorem 5.1 onM′ with privacy parameters 2𝜀, 𝛿 . This leads to the following result:

Corollary 5.2. For the simple sample-and-explore strategy S and any (𝜀, 𝛿)-DP mechanismM that
does not depend on users without contributions,MS satisfies (𝜀′

1
, 𝛿 ′

1
)-DP, where

𝜀′
1
= ln

(
1 + 𝜏

𝑛
· (𝑒2𝜀 − 1)

)
,

𝛿 ′
1
=
𝜏

𝑛
· (𝑒𝜀 + 1) · 𝛿.

Remark. The Corollary above aims for generality while losing a factor of 2. For manymechanisms,

we can bound 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) and 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀) more directly, thus obtaining a tighter privacy

amplification result, as shown in Section 5.4.

5.3 Repeated Sample-and-explore
The privacy amplification result above only considers sampling a single user, which has a large

sampling error. To reduce the sampling error, we repeat the sampling𝑘 times independently and take
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the average. More precisely, let 𝐼
(𝑖 )
|𝑢𝑠 denote the 𝑖-th sample, then the repeated sample-and-explore

mechanism is

MS (𝐼 ) = 1

𝑘
·

𝑘∑︁
𝑖=1

M(𝐼 (𝑖 )|𝑢𝑠 ).

The privacy ofMS follows from Theorem 5.1 and Lemma 3.2 straightforwardly:

Theorem 5.3. For the repeated sample-and-explore strategy S, any (𝜀, 𝛿)-DP mechanismM that
does not depend on users without contributions, and any 𝛿0 > 0,MS satisfies (𝜀′, 𝛿 ′)-DP for

𝜀′ =

√︂
2𝑘 ln( 1

𝛿0

) · 𝜀′
1
+ 𝑘𝜀′

1
(𝑒𝜀′1 − 1),

𝛿 ′ = 𝑘𝛿 ′
1
+ 𝛿0,

for 𝜀′
1
, 𝛿 ′

1
stated in Theorem 5.1 or Corollary 5.2.

For 𝜀′ < 𝑂 (1), the result above can be simplified to 𝜀′ = Θ( 𝜏
𝑛
·
√︁
𝑘 log(1/𝛿0) · 𝜀), or 𝜀 = Θ(𝜀′ ·

𝑛
𝜏
/
√︁
𝑘 log(1/𝛿0)). Thus, the DP noise after averaging over 𝑘 invocations ofM and scaling back is

(assumingM adds zero-mean noise)

𝑛 · NoiseM (𝜀, 𝛿)√
𝑘

= 𝑛 · 𝜏
𝑛
·
√︁
𝑘 log(1/𝛿0) ·

NoiseM (𝜀′, 𝛿 ′)√
𝑘

= 𝜏 ·
√︁

log(1/𝛿0) · NoiseM (𝜀′, 𝛿 ′).

Example 5.3. Continuing with Example 5.1, we repeat sample-and-explore 𝑘 times and take the

average. The sampling error is then reduced to 𝑂 (𝑛/
√
𝑘). To compare it with simple sampling,

we set 𝜂 = 𝑘
𝑛
, then the sampling error of simple sampling is 𝑂 (𝑛2/𝑘1.5), i.e., repeated sample-and-

explore reduces the sampling error by a factor of 𝑂 (𝑛/𝑘), or 𝑂 ((𝑛/𝑘) (ℓ−1)/2) for a pattern with ℓ

nodes. Intuitively, this is because in sample-and-explore, all users taken into the sample are “useful”,

whereas most users sampled under simple sampling are wasted as they do not form tuples with

contributions (i.e., triangles).

In terms of DP noise, sample-and-explore reduces that of simple sampling (see Section 4.2) by

a factor of 𝑂 ((𝑛/𝑘)ℓ−1/𝜏). Note that, without privacy amplification, we must use composition

to allocate the given privacy budget 𝜀′ to each invocation of the mechanismM running on the

𝑘 samples, each with 𝜀 ≈ 𝜀′/
√
𝑘 (ignoring log factors). The DP noise on each sample is thus√

𝑘 · NoiseM (𝜀′, 𝛿 ′). The averaging reduces the noise by a factor of

√
𝑘 , to NoiseM (𝜀′, 𝛿 ′). Finally,

the scaling-back puts the final DP noise at 𝑛 ·NoiseM (𝜀′, 𝛿 ′). This is not necessarily better than the

DP noise of simple sampling and may dominate the sampling error. Thus, it is important to derive

privacy amplification results for sample-and-explore to continue to be useful under DP. □

5.4 Instantiation with Truncation Mechanism
In this section, we instantiate our sample-and-explore framework withM being the truncation

mechanism [10, 22], which is the state-of-the-art mechanism under user-DP. Instead of a direct

plug-in, we make the following three technical improvements: First, due to some nice properties of

each sampled instance 𝐼 |𝑢𝑠 in the sample-and-explore framework, we can simplify the mechanism

without solving the linear program. Second, we tighten the privacy amplification analysis for the

truncation mechanism by analyzing 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔0𝑀) and 𝐷𝑒𝜀 (𝜔1𝑀 | |𝜔 ′1𝑀) directly. Thirdly, as the
truncation mechanism truncates user contributions before adding noise, it introduces a (negative)

bias. While repeated sample-and-explore can reduce variance by increasing 𝑘 , it cannot reduce bias.

Thus, some careful bias-variance trade-off needs to be done to minimize the total DP error.
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We first review the truncation mechanism M in [10, 22] when applied on a sample 𝐼 |𝑢𝑠 =

(𝑈 |𝑢𝑠 ,𝑉|𝑢𝑠 ). A variable 𝑥𝑡 is introduced for each record 𝑡 ∈ 𝑅(𝐼 |𝑢𝑠 ). Given a truncation threshold 𝐶 ,

M solves the linear program:

maximize
ˇ𝑓 (𝐼 |𝑢𝑠 ,𝐶) =

∑︁
𝑡 ∈𝑅 (𝐼 |𝑢𝑠 )

𝑥𝑡

subject to

∑︁
𝑡 ∈𝑅 (𝐼 |𝑢𝑠 ,𝑢 )

𝑥𝑡 ≤ 𝐶,∀𝑢 ∈ 𝑈 |𝑢𝑠 ,

0 ≤ 𝑥𝑡 ≤ 𝑤 (𝑡),∀𝑡 ∈ 𝑅(𝐼 |𝑢𝑠 ) .

Since the constraints in the linear program ensure that each user contributes to at most 𝐶 , the

global sensitivity of
ˇ𝑓 (·,𝐶) is 𝐶 . Then,M outputs

ˇ𝑓 (𝐼 |𝑢𝑠 ,𝐶) +𝐶 · Lap(1/𝜀).

Simplification. We note that in any sample 𝐼 |𝑢𝑠 , all the records are contributed by user 𝑢𝑠 . Thus,

one of the constraints, namely,

∑
𝑡 ∈𝑅 (𝐼 |𝑢𝑠 ,𝑢𝑠 ) 𝑥𝑡 ≤ 𝐶 , dominates all others, and the linear program

can be simplified to a truncated sum, i.e.,

ˇ𝑓 (𝐼 |𝑢𝑠 ,𝐶) = min

(
𝑓 (𝐼 |𝑢𝑠 ),𝐶

)
.

Privacy analysis. It is easy to see that the truncation mechanism does not depend on users

without contributions, so the results in Section 5.2 directly apply. Actually, we can tighten the

privacy amplification analysis. The key observation is that for any instances 𝐼 , 𝐼 ′, not necessarily
neighbors, we always have

| ˇ𝑓 (𝐼 ,𝐶) − ˇ𝑓 (𝐼 ′,𝐶) | ≤ 𝐶.

Therefore, the Laplace noise can always mask the difference, i.e., 𝛿M,𝑘 (𝜀) = 𝛿M (𝜀) for all 𝑘 . Then we
can replace 𝛿M,𝑘 (𝜀) in Theorem 5.1 with 𝛿M (𝜀) to get the tight privacy analysis for the truncation

mechanism:

Theorem 5.4. For the simple sample-and-explore strategy S and the 𝜀-DP truncation mechanism
M,MS satisfies (𝜀′, 0)-DP for

𝜀′ = ln(1 + 𝜏

𝑛
· (𝑒𝜀 − 1)).

Then we combine Theorem 5.4 and 5.3 for the repeated sample-and-explore instantiation with

the truncation mechanism, as described in Algorithm 1. In the algorithm, we also allocate part of

the privacy budget 𝜀𝑛 to compute a privatized 𝑛̃ to be used as the scaling-back factor. Algorithm 1

then satisfies (𝜀total, 𝛿total)-DP.

Setting the truncation threshold 𝐶 . It remains to show how to find a good value for 𝐶 . Given a

threshold 𝐶 , the final output of Algorithm 1 is

˜𝑓 (𝐼 ) = 𝑛̃

𝑘
·

𝑘∑︁
𝑖=1

min

(
𝑓 (𝐼 (𝑖 )|𝑢𝑠 ),𝐶

)
+ 𝑛̃
𝑘
·𝐶 ·

𝑘∑︁
𝑖=1

Lap

(
1

𝜀

)
.

Let
ˇ𝑓 (𝐼 ,𝐶) = ∑

𝑢𝑠 ∈𝑈 min(𝑓 (𝐼 |𝑢𝑠 ),𝐶), so that

| ˇ𝑓 (𝐼 ,𝐶) − 𝑓 (𝐼 ) | =
∑︁
𝑢𝑠 ∈𝑈

max(𝑓 (𝐼 |𝑢𝑠 ) −𝐶, 0).
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Algorithm 1: Sum estimation by repeated sample-and-explore

Input :The instance 𝐼 , the function 𝑓 , the iteration number 𝑘 , the upper bound 𝜏 , the

truncation threshold 𝐶 , and the privacy budget 𝜀total and 𝛿total

Output :A privatized 𝑓 (𝐼 )
/* Step 1: Compute the privacy budget 𝜀 */

1 𝜀𝑛 ← 1

5
𝜀total, 𝜀

′ ← 4

5
𝜀total;

2 𝜀′
1
← argmax{𝑥 :

√︃
2𝑘 ln( 1

𝛿
total

) · 𝑥 + 𝑘𝑥 (𝑒𝑥 − 1) ≤ 𝜀′};
3 𝜀 ← ln( 𝑛

𝜏
(𝑒𝜀′1 − 1) + 1);

/* Step 2: Sample and explore */

4 for 𝑖 = 1, 2, . . . , 𝑘 do
5 Sample a user 𝑢

(𝑖 )
𝑠 ∈ 𝑈 , construct 𝐼

(𝑖 )
|𝑢𝑠 , and compute min(𝑓 (𝐼 (𝑖 )|𝑢𝑠 ),𝐶);

6 end
/* Step 3: Estimate the sum */

7 𝑛̃ ← 𝑛 + Lap( 1

𝜀𝑛
);

8 MS (𝐼 ) ← 1

𝑘
·∑𝑘

𝑖=1

(
min(𝑓 (𝐼 (𝑖 )|𝑢𝑠 ),𝐶) + Lap(𝐶

𝜀
)
)
;

9 return ˜𝑓 (𝐼 ) = 𝑛̃ · MS (𝐼 );

The expected error thus satisfies

E[| ˜𝑓 (𝐼 ) − 𝑓 (𝐼 ) |] ≤E
[����� 𝑛̃𝑘 · 𝑘∑︁

𝑖=1

min(𝑓 (𝐼 (𝑖 )|𝑢𝑠 ),𝐶) −
ˇ𝑓 (𝐼 ,𝐶)

�����
]

+
∑︁
𝑢𝑠 ∈𝑈

max(𝑓 (𝐼 |𝑢𝑠 ) −𝐶, 0)

+ 𝑛̃
𝑘
·𝐶 · E

[����� 𝑘∑︁
𝑖=1

Lap( 1
𝜀
)
�����
]

where the first term is the sample variance, the second term is the bias, and the last term is the DP

noise. For the last term, we further have

E

[����� 𝑘∑︁
𝑖=1

Lap( 1
𝜀
)
�����
]
≤ E


����� 𝑘∑︁
𝑖=1

Lap( 1
𝜀
)
�����2

1

2

=
√

2𝑘 · 1

𝜀
.

We next try to find a good truncation threshold 𝐶 to balance the bias and the DP noise, i.e., to

minimize

𝑔(𝐼 ,𝐶) =
∑︁
𝑢𝑠 ∈𝑈

max(𝑓 (𝐼 |𝑢𝑠 ) −𝐶, 0) +
√︂

2

𝑘
· 𝑛̃
𝜀
·𝐶.

By taking the derivative of 𝑔(𝐼 ,𝐶), the minimum is achieved when

𝜕𝑔(𝐼 ,𝐶)
𝜕𝐶

=

√︂
2

𝑘
· 𝑛̃
𝜀
− |{𝑢𝑠 ∈ 𝑈 : 𝑓 (𝐼 |𝑢𝑠 ) ≥ 𝐶}| = 0,
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Table 1. Basic information of graph data.

Dataset Amazon RoadnetCA USRN
Nodes 335,000 1,970,000 23,900,000

Edges 926,000 2,770,000 28,900,000

Maximum degree 549 12 9

Degree upper bound 𝑑 1,024 16 16

max𝑢 |Λ(𝐼 , 𝑢) | 290 11 9

Table 2. Basic information of TPC-H data.

Scale factor 0.25 1 4 16
Customers 37,500 150,000 600,000 2,400,000

Suppliers 2,500 10,000 40,000 160,000

max𝑢 |Λ(𝐼 , 𝑢) | 678 694 709 716

Upper bound 𝜏 1024

i.e., when 𝐶 equals the

√︃
2

𝑘
· 𝑛̃
𝜀
-th largest 𝑓 (𝐼 |𝑢𝑠 ). We can next approximate

𝜀′ ≈
√︂

2𝑘 ln( 1

𝛿0

) · 𝜀′
1
, 𝜀′

1
≈ 𝜂 · 𝜀, 𝑛̃ ≈ 𝑛.

The optimal truncation threshold 𝐶 is thus the

(√︃
ln( 1

𝛿0

) · 2𝜏
𝜀′

)
-th largest 𝑓 (𝐼 |𝑢𝑠 ). However, we

cannot use this exact 𝐶 as it is also private information. Instead, we can choose a 𝐶 based on some

rough prior knowledge of the tail distribution of users’ contributions.

6 EXPERIMENTS
To evaluate the efficiency and accuracy of our privacy amplification results, especially sample-and-

explore, we conducted an extensive set of experiments with subgraph counting queries in real-world

graph data [19, 28] under node-DP, as well as SQL queries on TPC-H data. For comparison, we also

tested the following methods:

• Sample&Explorepub and SimpleSamplepub: These refer to the two sampling algorithms

without adding privacy noise. These are meant to separate the sampling error from DP errors.

• The Laplace mechanism (Lap) and the R2T mechanism [10] without sampling: These apply

to both subgraph counting and SQL queries.

• The recursive mechanism (RM) [8], the naive truncation with smooth sensitivity (NT) [22] and
the smooth distance estimator (SDE) [6] without sampling: These are designed specifically

for counting subgraphs under node-DP.

The experiments were conducted on amachinewith a 2.2GHz Intel Xeon CPU and 256GBmemory.

We repeat each experiment 100 times, remove the best 20 and the worst 20 runs, and report the

average error of the remaining runs. The default privacy budget is 𝜀total = 4 and 𝛿total = 10
−8
.

6.1 Setup
Datasets. We used 3 real-world graph datasets: Amazon, RoadnetCA, and USRN. Amazon

is an Amazon product co-purchasing network. RoadnetCA is a road network of California and

USRN is a road network of the U.S. The basic information of the graphs is given in Table 1. Similar

to prior work [6, 10, 14], we choose the degree upper bound 𝑑 to be higher than the actual maximum

degree, as 𝑑 should not depend on the instance.
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Fig. 4. Query structures.

The TPC-H dataset consists of eight relations: Region(RK), Nation(RK,NK), Customer(NK,CK),
Orders(CK,OK), Supplier(NK,SK), Part(PK), PartSupp(SK,PK), Lineitem(SK,PK,OK,LN), where
the underlined attributes are the primary keys. We use datasets with scale factors ranging from

0.25 to 16. The basic information is shown in Table 2.

Queries. For graph data, we count the number of length-2 paths, triangles, rectangles, and 2-

triangles. For counting triangles (ℓ = 3) and rectangles (ℓ = 4), the mapping 𝑉 is as defined in

Section 1.2, i.e., 𝑉 (𝑥) = {1} iff the users (nodes) appear in ascending order of their user id in

𝑥 and they form a triangle or rectangle, respectively. For counting length-2 paths (ℓ = 3), we

use the following mapping: Suppose 𝑢1-𝑢2-𝑢3 form a length-2 path, then we set 𝑉 (𝑥) = {1} for
𝑥 = (𝑢2, 𝑢1, 𝑢3) such that 𝑢1 < 𝑢3. This way, 𝜏 = 𝑑 is an upper bound on the number of neighbors

any user 𝑢 may have, which is needed for privacy amplification. Similarly, for counting 2-triangles

(ℓ = 4), suppose 𝑢1, 𝑢2, 𝑢3, 𝑢4 form a 2-triangle where (𝑢1, 𝑢2, 𝑢3) and (𝑢1, 𝑢2, 𝑢4) are both triangles.

Then we set 𝑉 (𝑥) = {1} for 𝑥 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) such that 𝑢1 < 𝑢2, 𝑢3 < 𝑢4. Then we can set 𝜏 = 𝑑 as

an upper bound on the number of neighbors any user 𝑢 has.

For TPC-H data, we select 7 queries from the benchmark. We remove the group-by clause but

keep all joins, selection conditions, and aggregations. The structures of the queries are shown in

Figure 4. We view either customers, suppliers, or both, as users. When we only view customers or

suppliers as users (ℓ = 1), for each user 𝑢, 𝑉 maps 𝑢 to all the records contributed by 𝑢. When we

view both as users (ℓ = 2), we map each (customer, supplier) pair to all the records contributed by

them.

Parameter settings. For Sample&Explore, we need an upper bound 𝜏 on the user contributions,

and a truncation threshold 𝐶 . For subgraph counting queries, we can verify that 𝜏 = 𝑑 is a valid

setting when we count subgraphs except for rectangles. For counting rectangles, a trivial setting

is 𝜏 = 𝑂 (𝑑2), however, such a 𝜏 is too large for us to obtain privacy amplification. Furthermore,

we note that most real-world networks are not dense so that the exact max𝑢 |Λ(𝑉 ,𝑢) |’s, as shown
in Table 1, can be well bounded by 𝜏 = 𝑑 . Thus, we use the same 𝜏 ’s for counting rectangles. For

the truncation threshold 𝐶 , we try different values 𝐶 = 2
𝑖 , 𝑖 = 0, 1, . . . and report the best one. The

impact of the setting of 𝐶 is shown in the last section of the experiments.

Both R2T and Lap require the global sensitivities GS𝑓 ’s, which is computed from the degree

upper bound 𝑑 . For example, when we count triangles, we set GS𝑓 =
𝑑 (𝑑−1)

2
. NT and SDE instead

require a truncation threshold 𝐶 (on the maximum degree in the truncated graph). Similar to

Sample&Explore, we try different values 𝐶 = 2
𝑖 , 𝑖 = 0, 1, . . . and report the best one.

For SimpleSample, we adopt the Laplace mechanism as the DP mechanism due to its efficiency.

To compute the global sensitivities for the samples, we first compute a degree upper bound 𝑑𝑠 for
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the sample. For RoadnetCA and USRN, we always have 𝑑𝑠 = 𝑑 as the degree upper bound 𝑑 is

small enough. For Amazon, we note that 𝑑 is too large for the sample when a small sampling

rate 𝜂 is given. Therefore, we set 𝑑𝑠 = 2𝜂 · 𝑑 instead. All the global sensitivities GS𝑓 ’s are then

computed using the sampled degree upper bound 𝑑𝑠 . For example, when we count triangles, we set

GS𝑓 =
𝑑𝑠 (𝑑𝑠−1)

2
≈ 4𝜂2 · 𝑑 (𝑑−1)

2
.

The parameter settings for the TPC-H dataset are similar. For Sample&Explore, when only

customers or suppliers are viewed as users, we can verify that 𝜏 = 1 is a valid setting. When both

are viewed as users, max𝑢 |Λ(𝐼 , 𝑢) |’s for different scales are shown in Table 2, and we simply set

𝜏 = 1024 for all scales. The clipping threshold 𝐶 follows the same setting as before. Moreover, we

assume we are given the prior knowledge that each user contributes to at most 10
3
records, and

each record has weight as most 10
3
. For R2T and Lap, the global sensitivity GS𝑓 is thus 10

3
for

counting queries and 10
6
for sum estimation queries. For NT and SDE, the clipping threshold 𝐶 also

follows the same setting as before. For SimpleSample, we scale the global sensitivity similarly as

before. When customers or suppliers are viewed as users, we have GS𝑓 = 10
3
and 10

6
for counting

and sum estimation queries, respectively, as all the records contributed by 𝑢𝑠 are added to the

sample. When both are viewed as users, the global sensitivity is GS𝑓 = 2𝜂 · 10
3
and GS𝑓 = 2𝜂 · 10

6

instead.

Implementation. As with most sampling-based approximate query processing systems [18, 24, 36],

we pre-build necessary data structures to support sampling users and retrieve the contributions

of the sampled user. In particular, for TPC-H data, we build an index on the primary key of each

relation. This allows us to sample a user and retrieve all its contributions efficiently. For graph data,

we store the graph in an adjacency list.

6.2 Experimental Results
For sampling-based algorithms, we are interested in the sample size-error trade-off. However,

different sampling methods have different overheads, so we plot the time-error trade-off instead

for a fair comparison. More precisely, in each experiment, we try different sample sizes (for sample-

and-explore) or sampling rates (for simple sampling), measure the wall-clock time and the error,

and plot the trade-off results. For non-sampling-based algorithms, their results just appear as single

points in the plots. The errors are relative errors, so any error greater than 1 is meaningless, hence

omitted.

Subgraph counting. The experimental results for various graph patterns are plotted in Figure 5.

The first clear observation is that, in all cases, Sample&Explore is the first to return meaningful

estimates in short running times, often 10
2
to 10

4
times faster than SimpleSample, and 10

2
to 10

6

times faster than the exact mechanisms. Of course, the latter can achieve a smaller error, as it

only has DP noise but no sampling error. Anyway, the purpose of studying sampling-based DP

mechanisms is to offer this time-error trade-off, which is useful for applications that desire a quick

but not-so-accurate estimate. In fact, the two can be used in conjunction: The data analyst may

first use some privacy budget to obtain a quick estimate, and if needed, a more accurate result can

be computed, which would take (much) more time.

According to the analysis, we have shown that the error upper bound of our sampling mechanism

is close to that of R2T, up to a factor of 𝜏 . Besides, the error of both R2T and our sampling mechanism

consists of a bias term and a variance term. While the variance term approaches 0 as the sample

size increases, the bias term does not, and the two mechanisms may have different biases.

Next, we compare the two sampling-based mechanisms. For length-2 paths and triangles,

SimpleSample performs better than Sample&Explore on Amazon after sufficient time. This is

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 34. Publication date: February 2024.



34:20 Juanru Fang & Ke Yi

10 3 10 2 10 1 100 101 102

10 1

100

Er
ro

r L
ev

el

10 3 10 2 10 1 100 101 102
10 5

10 4

10 3

10 2

10 1

100

10 3 10 2 10 1 100 101 102 103

10 5

10 3

10 1

10 3 10 2 10 1 100 101
10 2

10 1

100

Er
ro

r L
ev

el

10 3 10 2 10 1 100 101 102 103
10 4

10 3

10 2

10 1

100

Sample&Explorepub

Sample&Explore
SimpleSamplepub

SimpleSample
Lap
R2T

NT
SDE

RM

10 3 10 2 10 1 100 101 102 103

10 4

10 3

10 2

10 1

100

10 2 10 1 100 101 102

10 1

100

Er
ro

r L
ev

el

10 3 10 2 10 1 100 101 102

10 3

10 2

10 1

100

10 3 10 2 10 1 100 101 102 103

10 4

10 3

10 2

10 1

100

10 3 10 2 10 1 100 101 102

Amazon

10 1

100

Er
ro

r L
ev

el

10 3 10 2 10 1 100 101

RoadnetCA

10 2

10 1

100

10 3 10 2 10 1 100 101 102 103

USRN

10 2

10 1

100

Tw
oP

at
h

Tr
ia

ng
le

Re
ct

an
gl

e
Tw

oT
ria

ng
le

Fig. 5. Result of subgraph counting

because the pattern is simple and the graph is dense. For all other cases, Sample&Explore obtains

a better time-error trade-off than that of SimpleSample or even SimpleSamplepub especially in

the early stage, i.e., small sample size 𝑘 . This agrees with our analysis that, on sparse graphs,

Sample&Explore has an advantage of 𝑂 ((𝑛/𝑘) (ℓ−1)/2) over SimpleSample in terms of sampling

error, and 𝑂 ((𝑛/𝑘)ℓ−1/𝜏) in terms of DP noise.

We can also compare the sampling-based DP mechanisms with their non-private versions. We

see that when the graph is sparse like RoadnetCA and USRN, the results of Sample&Explore
are very close to those of Sample&Explorepub, indicating a strong privacy amplification. The gap

becomes larger for denser graphs like Amazon. In contrast, the gap between SimpleSample and
SimpleSamplepub depends on the sampling rate 𝜂 and the global sensitivity GS𝑓 . Thus, when the

global sensitivity is small, e.g, when we count length-2 paths, the results of SimpleSample and

SimpleSamplepub almost coincide. Comparatively, when the global sensitivity is large, e.g., when

we count rectangles, the gap can be so large that SimpleSample cannot achieve an error smaller

by 1, hence omitted from the plot.

TPC-H queries. We conduct experiments on the datasets with scale 16, and the results are shown

in Figure 6. With a time limit of 1000 seconds, R2T can only answer 6 of the 8 queries. The overall

trends are similar to those on subgraph counting: Sample&Explore has a better error-time trade-off

than SimpleSample in general, but SimpleSamplemay achieve better accuracy after sufficient time.

It is also interesting to see the results from Q18 where we take the customers or both the customers

and the suppliers as users. We can see that the error level increases for both sampling mechanisms

when we protect the privacy of both customers and suppliers. For Sample&Explore, this is because
the upper bound 𝜏 increases, and we obtain lower privacy amplification. For SimpleSample, this is
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Fig. 6. Results of TPC-H queries

because a record only appears in the sample if the corresponding customer and supplier are both

sampled, which is only with probability 𝜂2
. In addition, for R2T, the running time increases a lot

due to the complex correlation of the users’ contributions.

Sample size, accuracy and efficiency. In addition to plotting the error level against the running time,

we have further generated plots that depict the error level and the running time in relation to the

sample size for both Sample&Explore and SimpleSample. We use triangle counting as the problem

and the results are shown in Figure 7. The results better illustrate why Sample&Explore outperforms

SimpleSample, as shown in Figure 5. In terms of accuracy, Sample&Explore can achieve a relative

error of less than 1 with a much smaller sample size, compared with SimpleSample, which aligns

with our analysis of the sampling error. Moreover, in terms of efficiency, Sample&Explore and

SimpleSample use operations of varying time costs. In Sample&Explore, the number of triangles
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Fig. 7. Error level and running time of Sample&Explore and SimpleSample with respect to the sample size

contributed by a specific sampled node can be computed by accessing its one-hop neighbors.

However, in SimpleSample, we need to construct the induced subgraph after sampling before

determining the count. Therefore, both mechanisms experience varying speeds of increase in

running time as the sample size grows, and for smaller sample sizes, Sample&Explore is more

efficient compared to SimpleSample.

Scalability. We next analyze the impact of the size of the datasets on the results. We use Q3 and

Q5 as examples, with dataset scales ranging from 0.25 to 16. The results are shown in Figure 8.

We first note that the gap between Sample&Explore and Sample&Explorepub becomes smaller as

the datasets become larger. This is because, in the TPC-H dataset, larger datasets lead to more

users, and thus better privacy amplification. Therefore, we can infer that for larger datasets,

Sample&Explore can still have good performance close to the ones of Sample&Explorepub. In
terms of accuracy, all mechanisms achieve smaller relative errors as the datasets become larger.

However, in terms of efficiency, the running time of all mechanisms except Sample&Explore
increases linearly with the size of the dataset, which makes these mechanisms inefficient on large

datasets. In contrast, the running time of Sample&Explore is mainly dependent on the sample size.

This enables Sample&Explore to work well on large datasets in a short time.

We also note that in general, the benefits of any sampling method only manifest when the

scale is large enough. Unfortunately, it is hard to determine a specific threshold beyond which the

sampling-based mechanisms would work better than the exact mechanisms because the running

time of the latter varies a lot depending on the data. However, what is certain is that sampling-based

methods will outperform exact mechanisms when the scale is large enough. For example, on the

TPC-H data, R2T requires minutes to hours for different queries on a dataset with a scale of 16, and

as the datasets grow larger, the running time exhibits a faster-than-linear increase. Consequently,

for even larger scales, only sampling-based mechanisms will work in a reasonable amount of time.

Privacy budget 𝜀. We further conduct experiments on how the privacy budget 𝜀 affects the

performances of Sample&Explore and SimpleSample. We use triangle counting as the problem

and the results are shown in Figure 9. As 𝜀 increases, we can see that the overall error either
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Fig. 8. Results of TPC-H queries on datasets of different scales

decreases or stays the same. This is because the privacy budget 𝜀 only affects the DP noise, but not

the sample variance. More specifically, when the DP noise is much larger than the sample variance,

a smaller DP noise leads to a smaller overall error. In contrast, when the sample variance is much

larger than the DP noise, a smaller DP noise does not have much impact on the overall error. Note

that the results are obtained at different times, so we cannot simply compare the errors in Figure 9.

Truncation threshold 𝐶 . We use triangle counting as the problem and conduct experiments to

investigate the effect of the truncation threshold 𝐶 . We first verify the relationship between 𝐶

and the sample size 𝑘 . The results are shown in Figure 10, where the gray ones are the optimal

thresholds as analyzed in Section 5.4. We can see that the analysis gives a good threshold. Moreover,

the experimental results conform to the analysis that the optimal threshold is not affected by the

sample size 𝑘 much. Given that we have some prior knowledge of the tail distribution of users’
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contributions, we can set a good𝐶 using the parameters. The difference is that the optimal threshold

slightly increases as 𝑘 increases while the analysis shows that it should not change. One possible

reason is that, in the analysis, we do not consider the effect of the threshold 𝐶 on the sample

variance, however, in practice, a smaller 𝐶 leads to a smaller sample variance.

7 FUTUREWORK
Both simple sampling and sample-and-explore sample the users. Another common sampling strategy

in approximate query processing is to sample the records 𝑅(𝑉 ), which has been shown to offer

better accuracy in terms of sampling errors. Note that the records 𝑅(𝑉 ) correspond to the join

results, which are given implicitly. So sampling the records is equivalent to the problem of sampling

over joins, which itself is already nontrivial [18, 24]. Privacy amplification for join sampling is thus

a challenging but interesting problem worth further studying.
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