
Instance-optimal Truncation for Differentially Private Query

Evaluation with Foreign Keys

WEI DONG, College of Computing and Data Science, Nanyang Technological University, Singapore, Sin-

gapore

JUANRU FANG, Department of Computer Science and Engineering, The Hong Kong University of Science

and Technology, Hong Kong, Hong Kong

KE YI, Department of Computer Science and Engineering, The Hong Kong University of Science and Tech-

nology, Hong Kong, Hong Kong

YUCHAO TAO, Duke University, Durham, United States

ASHWIN MACHANAVAJJHALA, Computer Science, Duke University, Durham, United States

Answering SPJA queries under differential privacy (DP), including graph pattern counting under node-DP
as an important special case, has received considerable attention in recent years. The dual challenge of
foreign-key constraints combined with self-joins is particularly tricky to deal with, and no existing DP
mechanisms can correctly handle both. For the special case of graph pattern counting under node-DP, the
existing mechanisms are correct (i.e., satisfy DP), but they do not offer nontrivial utility guarantees or are
very complicated and costly. In this article, we propose two mechanisms for solving this problem with
both efficiency and strong utility guarantees. The first mechanism, called R2T, is simple and efficient, while
achieving down-neighborhood optimality with a logarithmic optimality ratio. Down-neighborhood optimality
is a new notion of optimality that we introduce for measuring the utilities of DP mechanisms, which can
be considered as a natural relaxation of instance optimality, and it is especially suitable for functions with
a large or unbounded sensitivity. Our second mechanism further reduces the optimality ratio to a double
logarithm, which is also known to be optimal, thus we call this mechanism OPT2. While OPT2 also runs
in polynomial time, it does have a higher computational cost than R2T in practice. Both R2T and OPT2 are
simple enough that they can be easily implemented on top of any RDBMS and an LP solver. Experimental
results show that they offer order-of-magnitude improvements in terms of utility over existing techniques,
even those specifically designed for graph pattern counting.

CCS Concepts: • Information systems→ Database query processing; • Security and privacy→ Data-

base and storage security; • Theory of computation→ Theory of database privacy and security;

Additional Key Words and Phrases: Differential privacy, SPJA query, foreign-key constraint

This work was supported by HKRGC under grants 16201318, 16201819, and 16205420; by an NTU-NAP startup grant; by
the National Science Foundation under grant 2016393; and by DARPA and SPAWAR under contract N66001-15-C-4067.
Authors’ Contact Information: Wei Dong, College of Computing and Data Science, Nanyang Technological University,
Singapore, Singapore, Singapore; e-mail: wei_dong@ntu.edu.sg; Juanru Fang, Department of Computer Science and En-
gineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong; e-mail: jfangad@cse.ust.hk;
Ke Yi, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong
Kong, Hong Kong; e-mail: yike@cse.ust.hk; Yuchao Tao, Duke University, Durham, North Carolina, United States; e-mail:
yuchao.tao@duke.edu; Ashwin Machanavajjhala, Computer Science, Duke University, Durham, North Carolina, United
States; e-mail: ashwin@cs.duke.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0362-5915/2024/11-ART13
https://doi.org/10.1145/3697831

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0002-0394-4125
HTTPS://ORCID.ORG/0000-0001-9038-0585
HTTPS://ORCID.ORG/0000-0002-2178-3716
HTTPS://ORCID.ORG/0000-0002-2101-3973
HTTPS://ORCID.ORG/0000-0003-1555-7330
mailto:permissions@acm.org
https://doi.org/10.1145/3697831
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3697831&domain=pdf&date_stamp=2024-11-08

13:2 W. Dong et al.

ACM Reference Format:

Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2024. Instance-optimal Trunca-
tion for Differentially Private Query Evaluation with Foreign Keys. ACM Trans. Datab. Syst. 49, 4, Article 13
(November 2024), 40 pages. https://doi.org/10.1145/3697831

1 Introduction

Differential privacy (DP), already deployed by Apple [13], Google [27], Microsoft [14], and the
U.S. Census Bureau [38], has become the standard notion for private data release, due to its strong
protection of individual information. Informally speaking, DP requires indistinguishability of the
query results whether any particular individual’s data is included or not in the database. The stan-
dard Laplace mechanism first finds GSQ , the (global) sensitivity, of the query—that is, how much
the query result may change if an individual’s data is added/removed from the database. Then it
adds a Laplace noise calibrated accordingly to the query result to mask this difference. However,
this mechanism runs into issues in a relational database, as illustrated in the following example.

Example 1.1. Consider a simple join-counting query

Q := |R1(x1, . . .) � R2(x1,x2, . . .)|.

Here, the underlined attribute x1 is the primary key (PK), whereas R2.x1 is a foreign key (FK)

referencingR1.x1. For instance,R1 may store customer information wherex1 is the customer ID and
R2 stores the orders the customers have placed. Then this query simply returns the total number of
orders; more meaningful queries could be formed with some predicates—for example, all customers
from a certain region and/or orders in a certain category. Furthermore, suppose the customers,
namely the tuples in R1, are the entities whose privacy we aim to protect.

What is theGSQ for this query? It is, unfortunately,∞. This is because a customer, theoretically,
could have an unbounded number of orders, and adding such a customer to the database can
cause an unbounded change in the query result. A simple fix is to assume a finite GSQ , which
can be justified in practice because we may never have a customer with, say, more than a million
orders. However, as assuming such a GSQ limits the allowable database instances, one tends to be
conservative and sets a large GSQ . This allows the Laplace mechanism to work, but adding noise
of this scale clearly eliminates any utility of the released query answer. �

1.1 The Truncation Mechanism

The preceding issue was first identified by Kotsogiannis et al. [34], who also formalized the DP

policy for relational databases with FK constraints. The essence of their model (a rigorous definition
is given in Section 3) is that the individuals and their private data are stored in separate relations
that are linked by FKs. This is perhaps the most crucial feature of the relational model, yet it
causes a major difficulty in designing DP mechanisms as illustrated previously. Their solution is
the truncation mechanism, which simply deletes all customers with more than τ orders before
applying the Laplace mechanism, for some threshold τ . After truncation, the query has sensitivity
τ , so adding a noise of scale τ is sufficient.

Truncation is a special case of Lipschitz extensions and has been studied extensively for graph
pattern counting queries [33] and machine learning [1]. A critical issue for the truncation mech-
anism is the bias-variance tradeoff: in one extreme τ = GSQ , it degenerates into the naive Laplace
mechanism with a large noise (i.e., large variance); in the other extreme τ = 0, the truncation
introduces a bias as large as the query answer. The issue of how to choose a near-optimal τ has
been extensively studied in the statistics and machine learning community [2, 3, 30, 39, 45]. A key
challenge there is that the selection of τ must also be done in a DP manner. In fact, the particular

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

https://doi.org/10.1145/3697831

Instance-optimal Truncation for Differentially Private Query Evaluation 13:3

query in Example 1.1 is equivalent to the one-dimensional mean (sum) estimation problem, which
is a basic building block for many machine learning tasks like stochastic gradient descent [1, 7, 49]
and clustering [50, 51].

1.2 The Issue with Self-Joins

While self-join-free queries are equivalent to mean (sum) estimation (see Section 4 for a more
formal statement), which have been well studied, self-joins introduce another challenge unique to
relational queries. In particular, all techniques from the statistics and machine learning literature
[2, 3, 30, 39, 45] for choosing a τ critically rely on the fact that the individuals are independent
(i.e., adding/removing one individual does not affect the data associated with another), which is
not true when the query involves self-joins. In fact, when there are self-joins, even the truncation
mechanism itself fails, as illustrated in the following example.

Example 1.2. Suppose we extend the query from Example 1.1 to the following one with a
self-join:

Q := |R1(x1, . . . ,) � R1(y1, . . .) � R2(x1,y1,x2, . . .)|.

Note that the PK of R1 has been renamed differently in the two logical copies R1 so that they join
different attributes of R2. For instance, R2 may store the transactions between pairs of customers,
and this query would count the total number of transactions. Again, predicates can be added to
make the query more meaningful.

Let G be an undirected τ -regular graph (i.e., every vertex has degree τ) with n vertices. We will
construct an instance I = (I1, I2), on which the truncation mechanism fails. Here, I1, I2 are instances
corresponding to relationR1 andR2 in Example 1.2. Let I1 be the vertices ofG, and let I2 be the edges
(each edge will appear twice asG is undirected). Thus,Q simply returns the number of edges in the
graph times 2. Let I′ be the neighboring instance corresponding to G ′, to which we add a vertex v
that connects to every existing vertex. Note that inG ′,v has degree n while every other vertex has
degree τ+1. Now truncating by τ fails DP: the query answer on I isnτ , and that on I′ is 0 (all vertices
are truncated). Adding noise of scale τ cannot mask this gap, violating the DP definition. �

The reason the truncation mechanism fails is that the preceding underlined claim does not hold
in the presence of self-joins. More fundamentally, this is due to the correlation among the individ-
uals introduced by self-joins. In the preceding example, we see that the addition of one node may
cause the degrees of many others to increase. For the problem of graph pattern counting under
node-DP, which can be formulated as a multi-way self-join counting query on the special schema
R = {Node(ID), Edge(src, dst)}, Kasiviswanathan et al. [33] propose an LP-based truncation mech-
anism (to differentiate, we will call the preceding truncation mechanism naive truncation) to fix
the issue, but they do not study how to choose τ . As a result, while their mechanism satisfies DP,
there is no optimality guarantee in terms of utility. In fact, if τ is chosen inappropriately, their
error can be even larger than GSQ —namely, worse than the naive Laplace mechanism.

1.3 Our Contributions

We start by studying how to choose a near-optimal τ in a DP manner in the presence of self-joins.
As with all prior τ -selection mechanisms over mean (sum) estimation [2, 3, 30, 39, 45] and self-
join-free queries [52], we first assume that the global sensitivity of the given query Q is bounded
byGSQ . Since one tends to set a largeGSQ as argued in Example 1.1, we must try to minimize the
dependency on GSQ .

Our first contribution (Section 5) is a simple and general DP mechanism, called Race-to-the-

Top (R2T), which can be used to adaptively choose τ in combination with any valid DP truncation

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:4 W. Dong et al.

mechanism that satisfies certain properties. In fact, it does not choose τ per se; instead, it directly
returns a privatized query answer with error at most O

(
log(GSQ) log log(GSQ) · DSQ (I)

)
for any

instance I with constant probability. While we defer the formal definition of DSQ (I) to Section 4,
what we can show is that it is an per-instance lower bound—that is, any valid DP mechanism has
to incur error Ω

(
DSQ (I)

)
on I (in a certain sense). Thus, the error of R2T is instance-optimal up to

logarithmic factors in GSQ .
However, as we see in Example 1.2, naive truncation is not a valid DP mechanism in the

presence of self-joins. In Section 5.1, we extend the LP-based mechanism of Kasiviswanathan
et al. [33], which only works for graph pattern counting queries, to general queries on an
arbitrary relational schema that uses the four basic relational operators: selection (with arbitrary
predicates), projection, join (including self-join), and sum aggregation. When plugged into R2T,
this yields the first DP mechanism for answering arbitrary SPJA queries in a database with FK
constraints. For SJA queries, the utility is instance-optimal, whereas the optimality guarantee for
SPJA queries (Section 5.2) is slightly weaker, but we argue that this is unavoidable.

While R2T has been shown to achieve high utility and efficiency, two issues remain. The first
is the assumption of a bounded GSQ , which, as mentioned earlier, restricts the space of allowable
database instances. The second issue is that its error is an O(log(GSQ) log log(GSQ))-factor, called
the optimality ratio, higher than the lower bound DSQ (I). It is not clear if this is the best one
can achieve. In this extended article, we address these two issues by designing a new mechanism
(Section 6) that achieves an error of O

(
log log(DSQ (I)) · DSQ (I)

)
on any instance I with constant

probability,1 without making any a priori assumptions on GSQ . Note that DSQ (I) is smaller than
GSQ for any I (so this is an exponential improvement in the optimality ratio), whereas the lat-
ter can even be infinity if no restriction is put on the allowable instances. Very recently, such a
doubly logarithmic optimality ratio has been shown to be the best possible even for self-join-free
queries [22]. For this reason, we call the new mechanism OPT2—namely, it is down-neighborhood-
optimal with an optimal optimality ratio. We also extend OPT2 to SPJA queries while maintaining
an optimality guarantee similar to that of R2T, albeit somewhat weaker.

Despite their nontrivial utility analysis, the mechanisms of R2T and OPT2 are actually very
simple, and they can be built on top of any RDMBS and an LP solver. To demonstrate their
practicality, we built a system prototype (Section 9) using PostgreSQL and CPLEX. Experimental
results (Section 10) show they can provide order-of-magnitude improvements in terms of utility
over the state-of-the-art DP-SQL engines. We obtain similar improvements even over node-DP
mechanisms that are specifically designed for graph pattern counting problems, which are just
special SJA queries. Furthermore, the experimental results show that while OPT2 has better
utility as indicated by the theory, it does incur a higher computational overhead (although still
polynomial). In practice, the user may choose one of them depending on whether higher utility
or higher efficiency is more desired.

R2T has been proposed in the conference version of this article [16]. In this article, we introduce
OPT2, which removes the assumption of a boundedGSQ and achieves the optimal optimality ratio.

1.4 Organization

The article is organized as follows. After reviewing the related work in Section 2, we begin the
technical development in Section 3. In Sections 4 and 5, we present R2T. In Section 6, we describe
OPT2. Section 7 gives a utility analysis for prior work [52], and Section 8 discusses our extension.
Finally, Section 9 introduces the system implement, then Section 10 presents the experimental
results. Section 11 provides additional discussion.

1All our derived error bounds hold with a high probability 1 − β for any β > 0, whereas in Section 1, we state the results
with a constant β for simplicity.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:5

2 Related Work

Answering arbitrary SQL queries under DP is the holy grail of private query processing. Most early
work focuses on answering a given set of counting queries over a single relation with different
predicates (namely, SA queries with count aggregation) [6, 8, 12, 29, 36, 42, 47, 48, 55, 58]. Some
works [8, 36, 42] design mechanisms that are optimal for the given query set, but over the worst-

case database. In particular, if the set consists of just one query, their optimality degenerates into
worst-case optimality.

Most existing work on join queries can only support restricted types of joins, such as PK-PK
joins [4, 40, 41, 44, 46] and joins with a fixed join attribute [54]. A number of recent papers try to
extend the support for joins, but as we see in Example 1.2, certain features like self-joins are tricky
to handle correctly. PrivateSQL [34] uses naive truncation to truncate the tuples with high degree,
so it does not really meet the DP requirement when there are self-joins. In a subsequent work,
Tao et al. [52] use naive truncation to truncate the tuples with high sensitivity for self-join-free
queries and they propose a mechanism to select τ . However, our analysis (see Section 7) shows
that the error of their mechanism is Ω

(
GSQ/log(GSQ)

)
with constant probability—that is, it is at

most a logarithmic-factor better than the naive Laplace mechanism that adds noise of scale GSQ .
We reduce the dependency on GSQ from (near) linear to logarithmic. We also compare with their
mechanism experimentally for self-join-free queries in Section 10.

Smooth sensitivity [43] is a popular approach for dealing with self-joins. Elastic sensitivity
[31] and residual sensitivity [19, 20], both of which are efficiently computable versions of
smooth sensitivity, can handle self-joins correctly. However, as we argue in Section 4, smooth
sensitivity (including any efficiently computable version) cannot support FK constraints, which
are important to modeling the relationship between an individual and all of his/her associated
data in a relational database. Consequently, they do not support node-DP for graph pattern
counting, which is an important special case of FK constraints.

Node-DP and edge-DP are two popular DP policies for private graph data, which respectively
are the special cases of having FK or no FK constraints in a relational database, as elaborated
in Section 3.2. For node-DP, Kasiviswanathan et al. [33] combine naive truncation and smooth
sensitivity, and also propose an LP-based truncation mechanism, whereas Blocki et al. [9] develop
a smooth distance estimator. All these mechanisms require a τ given in advance. As such, none
of them has any utility guarantees. Experimentally, we show in Section 10 (cf. Table 3) that the
error of these mechanisms is highly sensitive to τ , while there is no fixed τ that works well for all
queries and datasets. However, our mechanisms can always adaptively choose a τ that is provably
close to the optimal one tuned (note that the tuning violates DP!) for each particular query/dataset.
For edge-DP, better utility can be achieved [9, 32, 43, 57], but the privacy protection is weaker.

The recursive mechanism [11] also achieves an error close to DSQ (I), but without showing its
instance optimality. More importantly, it adopts an approach that is complicated and different from
the mainstream ones (e.g., the truncation mechanism and smooth sensitivity). In addition, its high
computational costs prevent it from being used in practice. In our experiments, we were able to
finish running this mechanism (with a time limit of 6 hours) only on the three test cases with the
smallest query result size.

3 Preliminaries

3.1 Database Queries

Letting R be a database schema, we start with a multi-way join:

J := R1(x1) � · · · � Rn(xn),

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:6 W. Dong et al.

where R1, . . . ,Rn are relation names in R and each xi is a set of arity(Ri) variables, where arity(Ri)

is the number of attributes in Ri . When considering self-joins, there can be repeats (i.e., Ri = R j);
in this case, we must have xi � xj , or one of the two atoms will be redundant. Let var (J) :=
x1 ∪ · · · ∪ xn .

Let I be a database instance over R. For any R ∈ R, denote the corresponding relation instance
in I as I(R). This is a physical relation instance of R. We use I(R, x) to denote I(R) after renaming its
attributes to x, which is also called a logical relation instance of R. When there are self-joins, one
physical relation instance may have multiple logical relation instances; they have the same rows
but with different column (variable) names.

A JA or SJA queryQ aggregates over the join results J (I). More abstractly, letψ : dom(var (J)) →
N be a function that assigns non-negative integer weights to the join results, where dom(var (J))
denotes the domain of var (J). The result of evaluating Q on I is

Q(I) :=
∑

q∈J (I)

ψ (q). (1)

Note that the functionψ only depends on the query. For a counting query,ψ (·) ≡ 1; for an aggrega-
tion query, for example, SUM(A∗B),ψ (q) is the value of A∗B for q. An SJA query with an arbitrary
predicate over var (J) can be easily incorporated into this formulation: if some q ∈ J (I) does not
satisfy the predicate, we simply setψ (q) = 0.

Example 3.1. Graph pattern counting queries can be formulated as SJA queries. Suppose we store
a graph in a relational database by the schema R = {Node(ID), Edge(src, dst)}, where src and
dst are FKs referencing ID, then the number of length-3 paths can be counted by first computing
the join

Edge(A, B) � Edge(B, C) � Edge(C, D),

followed by a count aggregation. Note that this also counts triangles and non-simple paths (e.g.,
x-y-x-z), which may or may not be considered as length-3 paths depending on the application. If
not, they can be excluded by introducing a predicate (i.e., redefining ψ) A � C ∧ A � D ∧ B � D. If
the graph is undirected, then the query counts every path twice, so we should divide the answer
by 2. Alternatively, we may introduce the predicate A < D to eliminate the double counting. �

Finally, for an SPJA query where the output variables are y ⊂ var (J), we simply replace J (I)with
πy J (I) in (1). Note that we use the relational algebra semantics of a projection, where duplicates
are removed. If not, the projection would not make any difference in the aggregate. In fact, it is
precisely the duplicate removal that makes SPJA queries more difficult than SJA queries in terms
of optimality, as we argue in Section 5.2.

3.2 DP in Relational Databases with FK Constraints

We adopt the DP policy in the work of Kotsogiannis et al. [34], which defines neighboring instances
by taking FK constraints into consideration. We model all FK relationships as a directed acyclic
graph over R by adding a directed edge from R to R′ if R has an FK referencing the PK of R′.
There is a2 designated primary private relation RP , and any relation that has a direct or indirect FK
referencing RP is called a secondary private relation. The referencing relationship over the tuples is
defined recursively as follows: (1) any tuple tP ∈ I(RP) said to reference itself; (2) for tP ∈ I(RP),
t ∈ I(R), t ′ ∈ I(R′), if t ′ references tP , R has an FK referencing the PK of R′, and the FK of t equals
to the PK of t ′, then we say that t references tP .

2For most parts of the article, we consider the case where there is only one primary private relation in R; the case with
multiple primary private relations is discussed in Section 8.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:7

For a join result q ∈ J (I), we say that q references tP ∈ I(RP) if tP � q � ∅. Let N = |I(RP)| and
M = |J (I)|. Let [k] = {1, 2, . . . ,k}. For i ∈ [N], let ti (I) be the ith tuple in I(RP); for j ∈ [M], let
qj (I) be the jth join result in J (I). To describe the relationships between tuples and join results, we
use Ci (I) and D j (I) to denote (the indices of) the set of join results that reference ti (I) and the set
of tuples that qj (I) references—that is,

Ci (I) = {j : qj (I)referencesti (I)}, (2)

D j (I) = {i : qj (I)referencesti (I)}. (3)

Two instances I and I′ are considered neighbors if I′ can be obtained from I by deleting a tuple
tP and all tuples referencing it. This ensures that the FK constraints are preserved. We use the
notation I ∼ I′ to denote two neighboring instances, and I ∼tP

I′ denotes that all tuples in the
difference between I and I′ reference the tuple tP ∈ RP . We write I′ ⊆ I if I′ can be obtained from
I by removing a set of tuples {tP : tP ∈ I(RP)} and all tuples referencing them. We thus have
I′(R) ⊆ I(R) for any R ∈ R.

Example 3.2. Consider the TPC-H schema:

R = {Nation(NK), Customer(CK, NK), Order(OK, CK), Lineitem(OK)}.

If the customers are the individuals whose privacy we wish to protect, then we designate Customer
as the primary private relation, which implies that Order and Lineitem will be secondary private
relations, whereas Nation will be public. Note that once Customer is designated as a primary pri-
vate relation, the information in Order and Lineitem is also protected since the privacy induced by
Customer is stronger than that induced by Order and Lineitem. Alternatively, one may designate
Order as the primary private relation, which implies that Lineitem will be a secondary private
relation, whereas Customer and Nation will be public. This would result in weaker privacy pro-
tection but offer higher utility. This is because each individual corresponds to fewer join results,
thereby necessitating less noise injection to maintain privacy. �

Some queries, as given in Example 3.1, may be incomplete—that is, it has a variable that is an FK
but its referenced PK does not appear in the queryQ . Following Kotsogiannis et al. [34], we always
make the query complete by iteratively adding those relations whose PKs are referenced toQ . The
PKs will be given variables names matching the FKs. For example, for the query in Example 3.1,
we add Node(A), Node(B), Node(C), and Node(D).

The preceding DP policy incorporates both edge-DP and node-DP, two commonly used DP
policies for private graph analysis, as special cases. In Example 3.1, by designating Edge as the
private relation (Node is thus public, and we may even assume it contains all possible vertex IDs),
we obtain edge-DP; for node-DP, we add FK constraints from src and dst to ID, and designate
Node as the primary private relation, whereas Edge becomes a secondary private relation.

Definition 3.3 (Differential Privacy). For ε > 0, a mechanism M is ε-DP if for any neighboring
instances I ∼ I′ and any output y,

Pr[M(I) = y] ≤ eε · Pr[M(I′) = y].

Typical values of ε used in practice range from 0.1 to 10, where a smaller value corresponds to
stronger privacy protection.

3.3 Common DP Mechanisms

The standard DP mechanism is the Laplace mechanism [24]. Let Lap(b) denote a random variable
drawn from the Laplace distribution with scale b and GSQ = maxI∼I′ |Q(I) − Q(I

′)| be the global

sensitivity of Q .

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:8 W. Dong et al.

ALGORITHM 1: SVT
Input: I, T , ε , Q1(I),Q2(I), . . .

1 T̃ ← T + Lap(2/ε);

2 for � ← 1, 2, . . . do

3 Q̃�(I) ← Q�(I) + Lap(4/ε);

4 if Q̃�(I) > T̃ then

5 Break;

6 end

7 end

8 return �;

Lemma 3.4. The Laplace mechanism M(I) = Q(I) + Lap(GSQ/ε) preserves ε-DP.

The sparse vector technique (SVT) [25] has as input a (possibly infinite) sequence of queries,
Q1(I),Q2(I), . . . , where each has global sensitivity 1, and a threshold T . It targets to find the first
query whose answer is above T . The detailed algorithm is given in Algorithm 1.

Lemma 3.5 ([22]). The SVT preserves ε-DP. If there exists a k such that Qk (I) ≥ T + 6 ln(2/β)/ε ,

then with probability at least 1 − β , SVT returns an � ≤ k such that Q�(I) ≥ T − 6 ln(2k/β)/ε .

4 Instance Optimality of DP Mechanisms with FK Constraints

Global Sensitivity and Worst-Case Optimality. The Laplace mechanism adds noise calibrated to
GSQ to the query answer. However, either a join or a sum aggregation makes GSQ unbounded.
The issue with the former is illustrated in Example 1.1, where a customer may have unbounded
orders; a sum aggregation with an unboundedψ results in the same situation. Thus, as with prior
work [2, 3, 30, 39, 45, 52], we first restrict to a set of instances I such that

max
I∈I,I′ ∈I,I∼I′

|Q(I) −Q(I′)| = GSQ , (4)

where GSQ is a parameter given in advance. For the query in Example 1.1, this is equivalent to
assuming that a customer is allowed to have at most GSQ orders in any instance. We will remove
this assumption in Section 6.

For general queries, the situation is more complicated. We first consider SJA queries. Given an
instance I and an SJA query Q , for a tuple tP ∈ I(RP), its sensitivity is

SQ (I, tP) :=
∑

q∈J (I)

ψ (q)I(qreferencestP), (5)

where I(·) is the indicator function. For SJA queries, (4) is equivalent to

max
I∈I

max
tP ∈I(RP)

SQ (I, tP) = GSQ .

For self-join-free SJA queries, it is clear that

Q(I) =
∑

tP ∈RP

SQ (I, tP),

which turns the problem into a sum estimation problem. However, when self-joins are present,
this equality no longer holds since one join result q references multiple tP ’s. This also implies that
removing one tuple from I(RP)may affect multiple SQ (I, tP)’s, making the neighboring relationship
more complicated than in the sum estimation problem, where two neighboring instances differ by
only one datum [2, 3, 30, 39, 45].

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:9

What notion of optimality shall we use for DP mechanisms over SJA queries? The traditional
worst-case optimality is meaningless, since the naive Laplace mechanism that adds noise of scale
GSQ is already worst-case optimal, just by the definition of GSQ . In fact, the basis of the entire
line of work on the truncation mechanism and smooth sensitivity is the observation that typical
instances should be much easier than the worst case, so these mechanisms all add instance-specific
noises, which are often much smaller than the worst-case noise level GSQ .

Instance Optimality. The standard notion of optimality for measuring the performance of an
algorithm on a per-instance basis is instance optimality. More precisely, letM be the class of DP
mechanisms and let3

Lins(I) := min
M ′ ∈M

min{ξ : Pr[|M ′(I) −Q(I)| ≤ ξ] ≥ 2/3}

be the lower bound any M ′ ∈ M can achieve (with probability 2/3) on I, then the standard defini-
tion of instance optimality requires us to design an M such that

Pr[|M(I) −Q(I)| ≤ c · Lins(I)] ≥ 2/3 (6)

for every I, where c is called the optimality ratio. Unfortunately, for any I, one can design a trivial
M ′(·) ≡ Q(I) that has 0 error on I (but fails miserably on other instances), so Lins(·) ≡ 0, which
rules out instance-optimal DP mechanisms by a standard argument [26].

To avoid such a trivial M ′, Asi and Duchi [5] and Dong and Yi [20] consider a relaxed version
of instance optimality where we compare M against any M ′ that is required to work well not just
on I but also on its neighbors—that is, we raise the target error from Lins(I) to

Lnbr(I) := min
M ′ ∈M

max
I′ ∈I,I∼I′

min{ξ : Pr[|M ′(I′) −Q(I′)| ≤ ξ] ≥ 2/3}.

Vadhan [53] observes that Lnbr(I) ≥ LSQ (I)/2, where

LSQ (I) := max
I′ ∈I,I′∼I

|Q(I) −Q(I′)|

is the local sensitivity ofQ at I. This instance optimality has been used for certain machine learning
problems [5] and conjunctive queries without FKs [20]. However, it has an issue for SJA queries
in a database with FK constraints: for any I, we can add a tP to I(RP) together with tuples in the
secondary private relations all referencing tP , obtaining an I′ such that SQ (I

′, tP) = GSQ (i.e.,
LSQ (·) ≡ GSQ). This means that this relaxed instance optimality degenerates into worst-case
optimality. This is also why smooth sensitivity, including all its efficiently computable versions
[19, 20, 31, 43], will not have better utility than the naive Laplace mechanism on databases with
FK constraints, since they are all no lower than the local sensitivity.

The reason the preceding relaxation is “too much” is that we require M ′ to work well on any
neighbor I′ of I. Under the neighborhood definition with FK constraints, this means that I′ can
be any instance obtained from I by adding a tuple tP and arbitrary tuples referencing tP in the
secondary private relations. This is too high a requirement for M ′, hence too low an optimality
notion for M .

To address the issue, Huang et al. [30] restrict the neighborhood in whichM ′ is required to work
well, but their definition only works for the mean estimation problem. For SJA queries under FK
constraints, we revise Lnbr(·) to

Ld-nbr(I) := min
M ′ ∈M

max
I′:I∼I′,I′⊆I

min{ξ : Pr[|M ′(I′) −Q(I′)| ≤ ξ] ≥ 2/3}.

3The probability constant 2/3 can be changed to any constant larger than 1/2 without affecting the asymptotics.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:10 W. Dong et al.

In other words, we require M ′ to work well only on I′ and its down-neighbors, which can be ob-
tained only by removing a tuple tP already in I(RP) and all tuples referencing tP . Correspondingly,
an instance-optimal M (w.r.t. the down-neighborhood) is one such that (6) holds where Lins is
replaced by Ld-nbr.

Clearly, the smaller the neighborhood, the stronger the optimality notion. Our instance optimal-
ity notion is thus stronger than those in other works [5, 20, 30]. Note that for such an instance-
optimal M (by our definition), there still exist I,M ′ such that M ′ does better on I than M , but if this
happens, M ′ must do worse on one of the down-neighbors of I, which is as typical as I itself.

Using the same argument from Vadhan [53], we have Ld-nbr(I) ≥ DSQ (I)/2, where

DSQ (I) := max
I′:I∼I‘,I′⊆I

|Q(I) −Q(I′)| = max
tP ∈I(RP)

SQ (I, tP) (7)

is the downward local sensitivity of I. Thus, DSQ (I) is a per-instance lower bound, which can be
used to replace Linc(I) in (6) in the definition of instance-optimal DP mechanisms.

5 R2T: Instance-Optimal Truncation

Our instance-optimal truncation mechanism, R2T, can be used in combination with any truncation
method Q(I,τ), which is a function Q : I × N→ N with the following properties:

(1) For any τ , the global sensitivity of Q(·,τ) is at most τ .
(2) For any τ , Q(I,τ) ≤ Q(I).
(3) For any I, there exists a non-negative integer τ ∗(I) ≤ GSQ such that for any τ ≥ τ ∗(I),

Q(I,τ) = Q(I).

Notice that the naive truncation for self-join-free SJA queries, as mentioned in Section 1.1,
also adheres to these three properties. We will describe various choices for Q(I,τ) depending on
whether the query contains self-joins and/or projections in the subsequent sections—that is, self-
join SJA queries in Section 5.1 and SPJA queries in Section 5.2.

Intuitively, such a Q(I,τ) gives a stable (property (1)) underestimate (property (2)) of Q(I),
whereas it reachesQ(I) for a sufficiently large τ (property (3)). Note thatQ(I,τ) itself is not DP. To
make it DP, we can add Lap(τ/ε), which would turn it into an ε-DP mechanism by property (1).
The issue, of course, is how to set τ . The basic idea of R2T is to try geometrically increasing values
of τ and somehow pick the “winner” of the race.

Assuming such a Q(I,τ), R2T works as follows. For a probability4 β , we first compute5

Q̃(I,τ (i)) := Q(I,τ (i)) + Lap

(
log(GSQ)

τ (i)

ε

)
− log(GSQ) ln

(
log(GSQ)

β

)
·
τ (i)

ε
, (8)

for τ (i) = 2i , i = 1, . . . , log(GSQ). Then R2T outputs

Q̃(I) := max
{
max

i
Q̃(I,τ (i)),Q(I, 0)

}
. (9)

The privacy of R2T is straightforward: since Q(I,τ (i)) has global sensitivity at most τ (i), and
the third term of (8) is independent of I, each Q̃(I,τ (i)) satisfies ε/log(GSQ)-DP by Lemma 3.4.
Collectively, all Q̃(I,τ (i))’s satisfy ε-DP by the basic composition theorem [26]. Finally, returning
the maximum preserves DP by the post-processing property of DP.

4The probability β only concerns the utility, not privacy.
5The log has base 2 and ln has base e .

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:11

Fig. 1. An illustration of R2T.

Utility Analysis. For some intuition on why R2T offers good utility, please see Figure 1. By prop-
erty (2) and property (3), as we increase τ , Q(I,τ) gradually approaches the true answer Q(I) from
below and reaches Q(I,τ) = Q(I) when τ ≥ τ ∗(I). However, we cannot use Q(I,τ) or τ ∗(I) directly,
as this would violate DP. Instead, we only get to see Q̃(I,τ), which is masked with the noise of
scale proportional to τ . We thus face a dilemma, that the closer we get to Q(I), the more uncertain
we are about the estimate Q̃(I,τ). To get out of the dilemma, we shift Q(I,τ) down by an amount
that equals to the scale of the noise (if ignoring the log log factor). This penalty for Q̃(I, τ̂), where
τ̂ is the smallest power of 2 above τ ∗(I), will be on the same order as τ ∗(I), so it will not affect its
error by more than a constant factor, whereas taking the maximum ensures that the winner is at
least as good as Q̃(I, τ̂). Meanwhile, the extra log log factor ensures that no Q̃(I,τ) overshoots the
target. Next, we formalize the intuition.

Theorem 5.1. On any instance I, with probability at least 1 − β , we have

Q(I) − 4 log(GSQ) ln

(
log(GSQ)

β

)
τ ∗(I)

ε
≤ Q̃(I) ≤ Q(I).

Proof. It suffices to show that each inequality holds with probability at least 1 − β

2 . For the

second inequality, since Q(I, 0) ≤ Q(I), we just need to show that maxi Q̃(I,τ
(i)) ≤ Q(I). By a

union bound, it suffices to show that Q̃(I,τ) ≤ Q(I) with probability at most β/(2 log(GSQ))

for each τ . This easily follows from property (2) of Q(I,τ) and the tail bound of the Laplace
distribution:

Pr[Q̃(I,τ) > Q(I)]

≤Pr[Q̃(I,τ) > Q(I,τ)]

=Pr

[
Lap

(
log(GSQ)

τ

ε

)
> log(GSQ) ln

(
log(GSQ)

β

)
·
τ

ε

]

=
β

2 log(GSQ)
.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:12 W. Dong et al.

For the first inequality, we discuss two cases τ ∗(I) = 0 and τ ∗(I) ∈ (2i−1, 2i] for some i ≥ 1. For
the first case, by property (3) of Q(I,τ), Q(I, 0) = Q(I). Therefore, Q̃(I) ≥ Q(I, 0) = Q(I). In the
following, we discuss the second case where τ ∗(I) ∈ (2i−1, 2i]. Note that 2i ≤ 2τ ∗(I). Let τ̂ = 2i .

By the tail bound on the Laplace distribution, with probability at least 1 − β

2 , we have

Q̃(I, τ̂) ≥Q(I, 2i) − 2 log(GSQ) ln

(
log(GSQ)

β

)
2i

ε

=Q(I) − 2 log(GSQ) ln

(
log(GSQ)

β

)
2i

ε
(10)

≥Q(I) − 4 log(GSQ) ln

(
log(GSQ)

β

)
τ ∗(I)

ε
. (11)

Note that (10) follows the third property of Q(I,τ), and (11) is because 2i ≤ 2τ ∗(I). Finally, since

Q̃(I) ≥ maxj Q̃(I,τ
(i)) ≥ Q̃(I, τ̂), the first inequality also holds with probability at least 1 − β

2 . �

5.1 Truncation for SJA Queries

In this section, we design a Q(I,τ) with τ ∗(I) = DSQ (I) for SJA queries. Plugged into Theorem 5.1
with β = 1/3 and the definition of instance optimality, this turns R2T into an instance-optimal DP
mechanism with an optimality ratio of O

(
log(GSQ) log log(GSQ)/ε

)
.

For self-join-free SJA queries, each join result q ∈ J (I) references only one tuple in RP . Thus,
the tuples in RP are independent—that is, removing one does not affect the sensitivities of others.
This means that naive truncation (i.e., removing all SQ (I, tP) > τ and then summing up the rest) is
a valid Q(I,τ) that satisfies the three properties required by R2T with τ ∗(I) = DSQ (I).

When there are self-joins, naive truncation does not satisfy property (1), as illustrated in Exam-
ple 1.2, where all SQ (I, tP)’s in two neighboring instances may differ. In the following, we generalize
the LP-based mechanism for graph pattern counting [33] to arbitrary SJA queries and show that
it satisfies the three properties with τ ∗(I) = DSQ (I).

Given a SJA queryQ and instance I, recall thatQ(I) =
∑

q∈J (I)ψ (q) andCi (I) is the indices of the
set of join results referencing ti (I). For each j ∈ [M], introduce a variable uj , which represents the
weight assigned to the join resultqj (I). We return the optimal solution of the following LP asQ(I,τ):

maximize Q(I,τ) =
∑

j ∈[M]

uj ,

subject to
∑

j ∈Ci (I)

uj ≤ τ , i ∈ [N],

0 ≤ uj ≤ ψ (qj (I)),j ∈ [M].

Example 5.2. We now give a step-by-step example to show how this truncation method works
together with R2T. Consider the problem of edge counting under node-DP, which corresponds to
the SJA query

Q := |σID1<ID2(Node(ID1) � Node(ID2) � Edge(ID1, ID2))|

on the graph data schema introduced in Example 3.1. Note that in SQL, the query would be written
as follows.

SELECT count(∗) FROM Node AS Node1, Node AS Node2, Edge

WHERE Edge.src = Node1.ID AND Edge.dst = Node2.ID AND Node1.ID < Node2.ID

Suppose we setGSQ = 210 = 1024. For this particularQ , this means the maximum degree of any
node in any instance I ∈ I is 1024. We set β = 0.1 and ε = 1.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:13

Fig. 2. Example of edge counting.

Now, suppose we are given an I containing 8103 nodes, which form 1000 triangles, 1000 4-cliques,
100 8-stars, 10 16-stars, and 1 32-star as shown in Figure 2. The true query result is

Q(I) = 3 × 1000 + 6 × 1000 + 8 × 100 + 16 × 10 + 32 = 9992.

We run R2T with τ (i) = 2i for i = 1, . . . , 8. For each τ = τ (i), we assign a weight uj ∈ [0, 1]
to each join result (i.e., an edge) that satisfies the predicate ID1 < ID2. To calculate Q(I,τ), we
can consider the LP on each clique/star separately. For a triangle, the optimal LP solution always
assigns uj = 1 for each edge. For each 4-clique, it assigns 2/3 to each edge for τ = 2 and 1
for τ ≥ 4. For each k-star, the LP optimal solution is min(k,τ). Thus, the optimal LP solutions
are

Q(I, 2) = 1 × 3000 +
2

3
× 6000 + 2 × 100 + 2 × 10 + 2 × 1 = 7222,

Q(I, 4) = 1 × 3000 + 1 × 6000 + 4 × 100 + 4 × 10 + 4 × 1 = 9444,

Q(I, 8) = 1 × 3000 + 1 × 6000 + 8 × 100 + 8 × 10 + 8 × 1 = 9888,

Q(I, 16) = 1 × 3000 + 1 × 6000 + 8 × 100 + 16 × 10 + 16 × 1 = 9976.

In addition, we have Q(I, 0) = 0 and Q(I,τ) = 9992 for τ ≥ 32.
Then, let us see how to run R2T with these Q(I,τ)’s. For concreteness, assume Lap(1) returns
−1 and 1 in turn. Plugging these into (8), we have the following:

Q̃(I, 2) =7222 + (−1) · 20 − 92.1 = 7109.9,

Q̃(I, 4) =9444 + 1 · 40 − 184 = 9300,

Q̃(I, 8) =9888 + (−1) · 80 − 368 = 9440,

Q̃(I, 16) =9976 + 1 · 160 − 737 = 9399,

Q̃(I, 32) =9992 + (−1) · 320 − 1474 = 8198,

Q̃(I, 64) =9992 + 1 · 640 − 2947 = 7685,

. . .

Finally, with (9), we have Q̃(I) = Q̃(I, 8) = 9440. �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:14 W. Dong et al.

Utility Analysis. The utility guarantee of the R2T instantiation for SJA queries follows from the
following lemma.

Lemma 5.3. For SJA queries, theQ(I,τ) defined previously satisfies the three properties required by

R2T with τ ∗(I) = DSQ (I).

Proof. Property (2) easily follows from the constraint uj ≤ ψ (qj (I)). For property (3), observe
that for SJA queries, for any i ∈ [N], SQ (I, ti (I)) =

∑
j ∈Ci (I)ψ (qj (I)). So when τ ≥ DSQ (I), all

constraints
∑

j ∈Ci (I) uj ≤ τ are satisfied automatically and we can set uj = ψ (qj (I)) for all j.
In the following, we prove property (1)—that is, for any I ∼ I′, Q(I,τ) and Q(I′,τ) differ by at

most τ . Without loss of generality, assume I ⊆ I′. It is clear that J (I) ⊆ J (I′), and we order the join
results in J (I′) in such a way that the extra join results are at the end. This means that the two
LPs on I and I′ share common variables u1, . . . ,uM , whereas the latter has some extra variables
uM+1, . . . ,uM ′ . Each constraint

∑
j ∈Ci (I) uj ≤ τ in the LP on I has a counterpart

∑
j ∈Ci (I′) uj ≤ τ in

the LP on I′, whereCi (I) ⊆ Ci (I
′). Let ti∗ be the tuple in I′(RP) that all tuples in I′−I reference. Note

that ti∗ may or may not appear in I. But in either case, the LP on I′ has a constraint
∑

j ∈Ci∗ (I
′)uj ≤ τ

and Ci∗ (I
′) contains all extra variables in the LP on I′.

Let {u∗j (I)}j be the optimal solution of the LP on I. We extend it to a solution {uj (I
′)}j of the LP

on I′, by setting uj (I
′) = u∗j (I) for j ≤ M and uj (I

′) = 0 for all j > M . It is clear that {uj (I
′)}j is a

valid solution of the LP on I′, so we have

Q(I′,τ) ≥
∑

j

uj (I
′) =

∑
j

u∗j (I) = Q(I,τ).

For the other direction, let {u∗j (I
′)}j be an optimal solution of the LP on I′. We cut it down to

a solution {uj (I)}j of the LP on I, by setting uj (I) = u∗j (I
′) for j ≤ M while ignoring all u∗j (I

′) for
j > M . It is clear that {uj (I)}j is a valid solution of the LP on I, so we have

Q(I,τ) ≥
∑

j

uj (I) ≥
∑

j

u∗j (I
′) − τ = Q(I′,τ) − τ ,

where the second inequality follows from the observation that the constraint
∑

j ∈Ci∗ (I
′) uj ≤ τ in

the LP on I′ implies that the sum of the ignored u∗j (I
′)’s is at most τ . �

Plugged into Theorem 5.1, this immediately yields the following corollary.

Corollary 5.4. For any SJA query Q and any instance I, R2T returns a Q̃(I) such that, with

probability at least 1 − β ,

Q(I) − 4 log(GSQ) ln

(
log(GSQ)

β

)
DSQ (I)

ε
≤ Q̃(I) ≤ Q(I).

5.2 Truncation for SPJA Queries

A Negative Result. The correctness of the LP-based truncation mechanism relies on a key prop-
erty of SJA queries, that removing tP will always reduceQ(I) by SQ (I, tP), which is the contribution
of tP to Q(I). Unfortunately, the projection operator violates this property, as illustrated in the fol-
lowing example.

Example 5.5. Revisit the queryQ in Example 1.1, where R1 is the primary private relation and R2

is a secondary relation. Consider the following instance I: set I(R1) = {(a1), (a2)}, I(R2) = {(ai ,bj) :
i ∈ [2], j ∈ [m]}. Then, SQ (I, (a1)) = SQ (I, (a2)) =m, Q(I) = 2m, and DSQ (I) =m.

Now, we add a projection operator, changing the query to

Q ′ := |πx2 (R1(x1) � R2(x1,x2))|.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:15

Both (a1) and (a2) contributem toQ(I), but their contributions “overlap,” thus removing either will
not affect the query result (i.e., DSQ ′ (I) = 0). �

Intuitively, a projection reduces the query answer, hence its sensitivity, so it requires less noise.
However, it makes achieving instance optimality harder because the optimality target,DSQ (I), may
get a lot smaller, as illustrated in the preceding example. In particular, the second equality in (7)
no longer holds (the first equality is the definition of DSQ (I)), and DSQ (I)may be smaller than any
SQ (I, tP). We formalize this intuition with the following negative result.

Theorem 5.6. Let Q ′ be the query in Example 5.5. For any GSQ ′ , there is a set of instances I

with global sensitivity GSQ ′ such that, for any functions M, f : I → R, if Pr[|M(I) − Q ′(I)| ≤
f (I) · DSQ ′ (I)] ≥ 2/3, then M is not ε-DP for any ε < 1

2 ln(2GSQ ′).

Proof. We build the set of instances I as follows. First, put the empty instance I0 into I. Then,
for anym ∈ [GSQ ′], construct an Im with Im(R1) = {(a1), (a2)}, Im(R2) = {(ai ,bj) : i ∈ [2], j ∈ [m]}.
Note thatQ ′(Im) =m, and DSQ ′ (Im) = 0 since removing either (a1) or (a2)will not affect the query
result. Finally, for each Im , remove (a1) (and all referencing tuples) and add the resulting instance
to I. It can be verified that the global sensitivity of I is GSQ ′ . Meanwhile, for anym ∈ [GSQ ′], Im

and I0 are 2-hop neighbors, so if M is ε-DP, then

Pr[M(Im) = y] ≤ e2ε Pr[M(I0) = y],

for any y, by the group privacy property of DP [26].
The instance optimality guarantee implies that for everym ∈ [GSQ ′],

Pr[M(Im) =m] ≥ 2/3.

Consider I0. On the one hand,
Pr[M(I0) � 0] ≤ 1/3. (12)

On the other hand,

Pr[M(I0) � 0] ≥ Pr[M(I0) = 1] + · · · + Pr[M(I0) = GSQ ′]

≥

GSQ′∑
m=1

e−2ε Pr[M(Im) =m]

≥

GSQ′∑
m=1

e−2ε · 2/3 =
2GSQ ′

3e2ε
,

which contradicts (12) when ε < 1
2 ln(2GSQ ′). �

Indirect Sensitivity. Recall the definition of SQ (I, tP) as in (5). However, for an SPJA query, we
haveQ(I) =

∑
q∈πy J (I)ψ (q) instead ofQ(I) =

∑
q∈J (I)ψ (q), thus (7) no longer holds. This means that

while SQ (I, tP) is still the contribution of tP to Q(I), it is “indirect”: the overlapping contributions
should be counted only once due to the projection operator removing duplicates.

We now define the indirect sensitivity for an instance I:

ISQ (I) = max
tP ∈I(RP)

SQ (I, tP).

It should be clear that ISQ (I) ≥ DSQ (I) due to the overlapping; in the extreme case shown in
Example 5.5, we have ISQ (I) = m but DSQ (I) = 0. In the following, we give a truncation method
for SPJA queries with τ ∗(I) = ISQ (I). When plugged into R2T, this yields a DP mechanism with
error O

(
log(GSQ) log log(GSQ)ISQ (I)/ε

)
. This is not instance-optimal, which is unachievable by

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:16 W. Dong et al.

Theorem 5.6 anyway. Note that for SJA queries, we have y = var (J), and DSQ (I) = ISQ (I) in this
case.

Truncation Mechanism. We modify the LP-based truncation mechanism from Section 5.1 to han-
dle SPJA queries. Let L = |πy J (I)| andpk (I) be thek-th result in πy J (I). To formalize the relationship
of the query results before and after the projection, we use Ek (I) to denote (the indices of) the join
results corresponding to the projected result pk (I)—that is,

Ek (I) := {j : pk = πyqj (I)},

whereas Ci (I) is still defined as in (2).
Now, we define a new LP. For each k ∈ [L], we introduce a new variable vk ∈ [0,ψ (pk (I))],

which represents the weight assigned to the projected result pk (I). For each j ∈ [M], we still use a
variableuj (I) ∈ [0,ψ (qj (I))] to represent the weight assigned to qj (I). We keep the same truncation
constraints on the uj ’s, while adding the constraint that the weight of a projected result should
not exceed the total weights of all its corresponding join results. Then, we try to maximize the
projected results. More precisely, the new LP is

maximize Q(I,τ) =
∑

k ∈[L]

vk

subject to vk ≤
∑

j ∈Ek (I)

uj , k ∈ [L],

∑
j ∈Ci (I)

uj ≤ τ , i ∈ [N],

0 ≤ uj ≤ ψ (qj (I)), j ∈ [M],

0 ≤ vk ≤ ψ (pk (I)),k ∈ [L].

We can show that this modified LP yields a valid truncation method for SPJA queries.

Lemma 5.7. For SPJA queries, the Q(I,τ) defined earlier satisfies the three properties required by

R2T with τ ∗(I) = ISQ (I).

Proof. First, same as SJA queries, property (2) holds due to the constraint vl ≤ ψ (pl (I)). For
property (3), we have SQ (I, ti) =

∑
j ∈Ci (I)ψ (qj (I)). Then, with the same argument as in the proof of

Lemma 5.3, we can show that the property holds with τ ∗(I) = ISQ (I). Finally, consider property (1).
For any I ∼ I′, I ⊆ I′, it is easy to see that J (I) ⊆ J (I′) and all different projection results are inCi∗ for
some i∗ ∈ N . Then, the same line of reasoning as in the proof of Lemma 5.3 proves property (1). �

Plugged into Theorem 5.1, we have the following corollary.

Corollary 5.8. For any SPJA query Q and any instance I, R2T returns a Q̃(I) such that, with

probability at least 1 − β ,

Q(I) − 4 log(GSQ) ln

(
log(GSQ)

β

)
ISQ (I)

ε
≤ Q̃(I) ≤ Q(I).

6 OPT2: Optimal Optimality Ratio without Assumptions

In this section, we propose another DP mechanism for answering SJA queries that improves upon
R2T from the following two aspects. First, R2T relies on assuming a finiteGSQ . This is undesirable
both theoretically and practically. Theoretically, this assumption restricts the space of allowable
database instances. Practically, setting an appropriate GSQ is not easy, as one can never foresee
how much data an individual may possess (via FKs) in any database instance. Note that it is wrong

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:17

to set GSQ to be the largest number of tuples belonging to an individual in the given instance I. It
must be set in such a way that (4) holds for all instances on which the mechanism is ever going to
be applied.

The mechanism described in this section not only removes the assumption on GSQ , thus allow-
ing all database instances (FK constraints must still be satisfied), but also improves the optimality
ratio from O(log(GSQ) log log(GSQ)) to O

(
log log(DSQ (I))

)
. This doubly logarithmic optimality

ratio has recently been shown to be optimal even for self-join-free queries—that is, the sum es-
timation [22]. We thus call this new mechanism OPT 2—namely, it achieves down-neighborhood
optimality with an optimal optimality ratio.

In the following, we first present a mechanism achieving the preceding two goals, but it takes
exponential time. Then, we show how to reduce the running time to polynomial by using LPs.
Finally, we show how the mechanism can be applied on SPJA queries as well.

6.1 An Exponential Time Algorithm for SJA Queries

In some sense, R2T bypasses the τ selection step and returns a privatized query answer directly. In
OPT2, we first select a good τ by finding a measurementG(I,τ) on any given τ . More importantly,
we will design G(I,τ) with a small global sensitivity so that we can use the privatized values of
G(I,τ) to do the τ selection with the SVT technique.

For any τ ∈ N, we define F (I,τ) as the maximum size of the primary private relation instance
over any I′′ ⊆ I whose downward local sensitivity is bounded by τ—that is,

F (I,τ) = max
I′′ ⊆I,DSQ (I′′)≤τ

|I′′(RP)|. (13)

For now, we use a brute-force method to compute F (I,τ) by enumerating all I′′ ⊆ I, thus taking
exponential time.

Next, define

G(I,τ) = F (I,τ) − N .

The following observation is immediate.

Lemma 6.1. For any I and any τ , G(I,τ) ≤ 0. If τ ≥ DSQ (I), then G(I,τ) = 0.

Therefore, we can decide whether τ is a good truncation threshold by looking atG(I,τ): ifG(I,τ)
is close to 0, using τ to the truncation will only result in a few tuples being truncated.

We next show that G(·,τ) has small global sensitivity for any τ .

Lemma 6.2. For any τ ∈ N, G(·,τ) has global sensitivity 1.

Proof. Given τ , for any I ∼ I′, assume I′(RP) = I(RP) ∪ {tP } without loss of generality. On the
one hand, it is trivial to see

F (I′,τ) ≥ F (I,τ), (14)

since for any I′′ ⊆ I, we also have I′′ ⊆ I′. On the other hand, let I∗′ = arg maxI′′ ⊆I′,DSQ (I′′)≤τ |I
′′ |.

Then, we can construct a I∗ from I∗′ by deleting all tuples referencing tP . Then, I∗ ⊆ I, DSQ (I
∗) ≤

DSQ (I
∗′) ≤ τ and |I∗(RP)| ≥ |I

∗′(RP)| − 1, which means

F (I,τ) ≥ F (I′,τ) − 1. (15)

Finally, combining (14), (15), and N ′ = N + 1, we can get

G(I,τ) − 1 ≤ G(I′,τ) ≤ G(I,τ). �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:18 W. Dong et al.

ALGORITHM 2: ExpOPT2

Input: I, ε , β , Q
1 �̃ ← SVT (−9 ln(4/β)/ε, 2ε/3,G(I, 2),G(I, 4),G(I, 8), . . .);

2 τ̃ ← 2�̃ ;

3 Q̃(I) ← Q(I, τ̃) + Lap
(

3τ̃
ε

)
;

4 return Q̃(I);

We can thus privately select a τ̃ such that G(I, τ̃) is smaller but very close to 0. The idea is
to run SVT over the queries G(I, 2),G(I, 4),G(I, 8), . . . with the threshold T = −9 ln(4/β)/ε . After
selecting a privatized threshold τ̃ , we truncate with the LP for SJA queries introduced in Section 5.1
and finally add Lap(τ̃/ε). The details of the algorithm, called ExpOPT 2, are shown in Algorithm 2.

Example 6.3. Here, we give a step-by-step example to show how ExpOPT2 works. Follow Exam-
ple 5.2 where N = 8103 and Q(I) = 9992. We also set β = 0.1 and ε = 1.

We run ExpOPT2 with τ = 2, 4, 8, . . . To calculate F (I,τ), we consider each clique/star separately.
For each k-clique instance ICk

, we can get F (ICk
,τ) = min(τ + 1,k). For each k-star instance ISk

,
we have F (ISk

,τ) = min(τ + 1,k + 1). Thus, we can compute

F (I, 2) = 3 × 1000 + 3 × 1000 + 3 × 100 + 3 × 10 + 3 × 1 = 6333,

F (I, 4) = 3 × 1000 + 4 × 1000 + 5 × 100 + 5 × 10 + 5 × 1 = 7555,

F (I, 8) = 3 × 1000 + 4 × 1000 + 9 × 100 + 9 × 10 + 9 × 1 = 7999,

F (I, 16) = 3 × 1000 + 4 × 1000 + 9 × 100 + 17 × 10 + 17 × 1 = 8087.

Besides, we have F (I,τ) = 8103 for τ ≥ 32.
We then compute G(I,τ) = F (I,τ) − N for all τ ’s and run the SVT. Similar to Example 5.2, we

assume Lap(1) returns {−1, 1} by turns. In SVT,

T̃ = −9 ln(4/β)/ε + Lap(3/ε) = −33.2 + (−1) · 3 = −36.2,

and

Q̃1(I) =F (I, 2) − N + Lap(6) = 6333 − 8103 + 1 · 6 = −1764,

Q̃2(I) =F (I, 4) − N + Lap(6) = 7555 − 8103 + (−1) · 6 = −554,

Q̃3(I) =F (I, 8) − N + Lap(6) = 7999 − 8103 + 1 · 6 = −98,

Q̃4(I) =F (I, 16) − N + Lap(6) = 8087 − 8103 + (−1) · 6 = −22.

Therefore, we will select τ̃ = 16. Finally, we compute

Q̃(I) = Q(I, τ̃) + Lap(
3τ̃

ε
) = 9976 + 1 · 48 = 10024. �

The privacy analysis of ExpOPT2 is straightforward. By Lemma 6.2 and Lemma 3.5, each G(I, ·)
has the sensitivity bounded by 1 and thus the SVT is (2ε/3)-DP. Besides, by Lemma 5.3 and
Lemma 3.4, Q(I, τ̃) has the sensitivity bounded by τ̃ , so Q̃(I) preserves (ε/3)-DP. Then, we obtain
that ExpOPT2 preserves ε-DP by the basic composition theorem of DP [26].

Utility Analysis. The intuition why ExpOPT2 offers good utility is as follows. When τ ≥ DSQ (I),
we always have F (I,τ) = N . Then according to Lemma 3.5, we know that with constant probability,
only a few (i.e., O

(
log log(DSQ (I))

)
) tuples tP ’s satisfy SQ (I, tP) > τ̃ . Therefore, truncating with τ̃

will only lead to a bias of O
(
log log(DSQ (I))DSQ (I)

)
. Besides, we have τ̃ = O(DSQ (I)) so that the

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:19

noise is bounded by O(DSQ (I)). Overall, we can bound the error by O
(
log log(DSQ (I)) · DSQ (I)

)
.

More precisely, we show that its over-estimation is O(DSQ (I)) while the under-estimation is
O
(
log log(DSQ (I)) · DSQ (I)

)
.

Theorem 6.4. On any instance I, ExpOPT2 returns a Q̃(I) such that with probability at least 1− β ,

Q(I) −
24DSQ (I)

ε
ln

(
4 log(2DSQ (I))

β

)
≤ Q̃(I) ≤ Q(I) +

6DSQ (I)

ε
ln

(
2

β

)
.

Proof. First, by Lemma 3.5 and 6.1, with probability at least 1 − β

2 , we have

τ̃ ≤ 2DSQ (I), (16)

and

G(I, τ̃) ≥ −
9

ε
ln

(
4

β

)
−

9

ε
ln

(
4 log(2DSQ (I))

β

)
,

which further means

N − F (I, τ̃) ≤
18

ε
ln

(
4 log(2DSQ (I))

β

)
. (17)

Recall
F (I, τ̃) = max

I′′ ⊆I,DSQ (I′′)≤τ̃
|I′′(RP)|,

and we denote
I∗ = arg max

I′′ ⊆I,DSQ (I′′)≤τ̃

|I′′(RP)|.

Then, by definition of I∗ and (17), we have

|I(RP)| − |I
∗(RP)| ≤

18

ε
ln

(
4 log(2DSQ (I))

β

)
,

and for any R ∈ R − {RP }, I(R) = I∗(R). Further recall that by the definition of DSQ (I), we can get

Q(I) −Q(I∗) ≤
18DSQ (I)

ε
ln

(
4 log(2DSQ (I))

β

)
. (18)

Recall Q(I, τ̃) is the optimal solution of the LP defined in Section 5.1. We now show that we can
construct a valid solution of the LP based on I∗. Since I∗ ⊆ I, I∗(RP) ⊆ I(RP) and J (I∗) ⊆ J (I). Then,
we set uj = ψ (qj (I)) if qj ∈ J (I∗) and uj = 0 otherwise. We can thus ensure uj ∈ [0,ψ (qj (I))] for
any j ∈ [M]. Moreover, DSQ (I

∗) ≤ τ̃ implies
∑

j ∈Ci (I)uj ≤ τ̃ for any i ∈ [N]. Therefore, {uj }j is a
valid solution for the LP of Q(I, τ̃) and its objective value is equal to Q(I∗). Since the LP maximizes
the objective function, we have

Q(I∗) ≤ Q(I, τ̃) ≤ Q(I), (19)

where the second inequality is by Lemma 5.3. Combining (18) and (19), we have

Q(I) −Q(I, τ̃) ≤
18DSQ (I)

ε
ln

(
4 log(2DSQ (I))

β

)
.

Finally, we complete the proof by using the tail bound of the Laplace distribution to show, with

probability at least 1 − β

2 ,

|Q̃(I) −Q(I, τ̃)| ≤
3τ̃

ε
ln

(
2

β

)
≤

6DSQ (I)

ε
ln

(
2

β

)
,

where the second equality is by (16). �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:20 W. Dong et al.

6.2 A Polynomial Time Algorithm for SJA Queries

The computational bottleneck in ExpOPT2 is the brute-force algorithm for computing F (I,τ). Un-
fortunately, there is little hope to do better than this, because even for the edge-counting query
under node-DP, which is a special SJA query, computing F (I,τ) already requires us to solve the
maximum degree-bounded induced subgraph problem, which is an NP-hard problem and even hard
to approximate [37].

To get around this difficulty, we will replace F (I,τ) by a proxy F̂ (I,τ) that is efficiently com-
putable. Our key observation is that F̂ (I,τ) does not need to be an approximation of F (I,τ) in the
traditional sense of approximation algorithms. In fact, we do not even need F̂ (I,τ) to correspond to
a valid I′′ as in the definition of F (I,τ) in (13) or take integer values. Instead, we only need F̂ (I,τ),
hence Ĝ(I,τ), to satisfy Lemma 6.1 and 6.2.

We will define F̂ (I,τ) using LP relaxation. First, we write F (I,τ) as an ILP. To represent an I′′ ⊆ I,
for each tuple ti in the primary private relation, we introduce a variable yi to indicate whether it
is included in I′′(RP). Similarly, we introduce a variable zj for each qj to indicate whether it is
included in J (I′′). Recall that D j (I) denotes the indices of the set of tuples that qj (I) references.
For each zj , let zj ≥

∑
i ∈D j (I) yi − |D j (I)| + 1. This is to ensure that qj appears in J (I′′) when all

ti ’s for i ∈ D j (I) are included in RP (I
′′). To enforce DSQ (I

′′) ≤ τ , we add the linear constraint∑
j ∈Ci (I)(zj ·ψ (qj (I))) ≤ τ for all i ∈ [N]. Above all, the ILP is written as

maximize F (I,τ) =
∑

i ∈[N]

yi

subject to zj ≥
∑

i ∈D j (I)

yi − |D j (I)| + 1, j ∈ [M],

∑
j ∈Ci (I)

(zj ·ψ (qj (I))) ≤ τ , i ∈ [N],

yi ∈ {0, 1}, i ∈ [N],

zj ∈ {0, 1}, j ∈ [M].

Next, we relax it into an LP:

maximize F̂ (I,τ) =
∑

i ∈[N]

yi ,

subject to zj ≥
∑

i ∈D j (I)

yi − |D j (I)| + 1, j ∈ [M],

∑
j ∈Ci (I)

(zj ·ψ (qj (I))) ≤ τ , i ∈ [N],

yi ∈ [0, 1], i ∈ [N],

zj ∈ [0, 1], j ∈ [M].

Finally, set

Ĝ(I,τ) = F̂ (I,τ) − N .

Now, we show that Lemma 6.1 and 6.2 still hold for Ĝ(I,τ).

Lemma 6.5. For any I and any τ , Ĝ(I,τ) ≤ 0 and if τ ≥ DSQ (I), then Ĝ(I,τ) = 0.

The proof of Lemma 6.5 is still trivial.

Lemma 6.6. For any τ ∈ N, Ĝ(·,τ) has global sensitivity 1.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:21

Proof. Similar to the proof of Lemma 6.2, for any I ∼ I′, assume I′(RP) = I(RP) ∪ {tP } and it
suffices to show

F̂ (I′,τ) ≥ F̂ (I,τ) ≥ F̂ (I′,τ) − 1.

Let {y∗i (I)}i , {z
∗
j (I)}j be the optimal solution of F̂ (I,τ), and {y∗i (I

′)}i , {z∗j (I
′)}j the optimal solution

of F̂ (I′,τ). Similar to the proof of Lemma 5.3, J (I) ⊆ J (I′) and we assume that the extra join results
in J (I′) are put at the end.

For the first inequality, we can extend {y∗i (I)}i , {z
∗
j (I)}j to a valid solution {yi (I

′)}i , {zj (I
′)}j of

I′ by setting yi (I
′) = 0 for tP and zj (I

′) = 0 for all j > M . For the second inequality, we can cut
{y∗i (I

′)}i , {z∗j (I
′)}j down to a valid solution {yi (I)}i , {zj (I)}j of I by ignoring y∗i (I

′) for tP and z∗j (I
′)

for j > M . Then,
∑

i ∈[N] yi (I) ≥
∑

i ∈[N ′] y
∗
i (I
′) − 1. �

Then, the algorithm OPT2 is the same as ExpOPT2 except that G(I,τ) is replaced with Ĝ(I,τ).

Example 6.7. We give a step-by-step example to show how OPT2 works. Consider the same
problem of edge counting under node-DP and the same instance I as Example 5.2. We have N =
8103 and Q(I) = 9992. We again set β = 0.1 and ε = 1.

We run OPT2 with τ = 2, 4, 8 . . . For each τ , we assign a weight yi ∈ [0, 1] to each node, and a
weight zj ∈ [0, 1] to each edge that satisfies the predicate ID1 < ID2. To calculate F̂ (I,τ), we again
can consider the LP on each clique/star separately. For a triangle, the optimal LP solution assigns
zj = τ/2 for each edge and yi = 1/2 + τ/4 for each node when τ < 2 and zj = yi = 1 when
τ ≥ 2. For each 4-clique, zj = τ/3 for each edge and yi = 1/2 + τ/6 for each node when τ < 3
and zj = yi = 1 when τ ≥ 3. For each k-star, the LP optimal solution is k +min(τ/k, 1). Thus, the
optimal LP solutions are

F̂ (I, 2) = 1 × 3000 +
5

6
× 4000 + 8

1

4
× 100 + 16

1

8
× 10 + 32

1

16
× 1 ≈ 7351.646,

F̂ (I, 4) = 1 × 3000 + 1 × 4000 + 8
1

2
× 100 + 16

1

4
× 10 + 32

1

8
× 1 = 8044.625,

F̂ (I, 8) = 1 × 3000 + 1 × 4000 + 9 × 100 + 16
1

2
× 10 + 32

1

4
× 1 = 8097.25,

F̂ (I, 16) = 1 × 3000 + 1 × 4000 + 9 × 100 + 17 × 10 + 32
1

2
× 1 = 8102.5.

In addition, we have F̂ (I,τ) = 8103 for τ ≥ 32. We can see that F̂ (I,τ) ≥ F (I,τ) for any τ due to the
relaxation of the ILP.

We then computeG(I,τ) = F (I,τ)−N for all τ ’s and run the SVT. Assume Lap(1) returns {−1, 1}
by turns. We have

T̃ = −9 ln(4/β)/ε + Lap(3/ε) = −33.2 + (−1) · 3 = −36.2,

and

Q̃1(I) =F̂ (I, 2) − N + Lap(6) = 7351.646 − 8103 + 1 · 6 = −745.354,

Q̃2(I) =F̂ (I, 4) − N + Lap(6) = 8044.625 − 8103 + (−1) · 6 = −64.375,

Q̃3(I) =F̂ (I, 8) − N + Lap(6) = 8097.25 − 8103 + 1 · 6 = 0.25,

Q̃4(I) =F̂ (I, 16) − N + Lap(6) = 8102.5 − 8103 + (−1) · 6 = −6.5.

After selecting the privatized threshold, which is τ̃ = 8 here, we finally compute

Q̃(I) = Q(I, τ̃) + Lap(
3τ̃

ε
) = 9888 + 1 · 24 = 9912. �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:22 W. Dong et al.

Utility Analysis. Finally, we can show the utility guarantee still holds.

Theorem 6.8. On any instance I, OPT2 returns a Q̃(I) such that with probability at least 1 − β ,

|Q̃(I) −Q(I)| ≤
24DSQ (I)

ε
ln

(
4 log(2DSQ (I))

β

)
.

Proof. First, similar to the proof of Theorem 6.4, by Lemma 3.5 and 6.5, with probability at least

1 − β

2 ,

τ̃ ≤ 2DSQ (I), (20)

and

N − F̂ (I, τ̃) ≤
18

ε
ln

(
4 log(2DSQ (I))

β

)
. (21)

Let {y∗i (I)}i , {z
∗
j (I)}j be the corresponding solutions of F̂ (I, τ̃). First, by (21), we have

N −
∑

i

y∗i (I) ≤
18

ε
ln

(
4 log(2DSQ (I))

β

)
. (22)

Let V ∗(I) =
∑

j (z
∗
j (I) ·ψ (qj (I))). We next show

Q(I) −V ∗(I) ≤
18DSQ (I)

ε
ln

(
4 log(2DSQ (I))

β

)
. (23)

We prove it by increasing the values of y∗i (I)’s, z∗j (I)’s, and V ∗(I) iteratively. For convenience, we
use superscript to show the iteration and regard the original ones as the values at the iteration 0—

that is, let y∗(0)i (I) = y
∗
i (I), z

∗(0)
j (I) = z∗j (I) for any i ∈ [N], j ∈ [M] and V ∗(0)(I) = V ∗(I). At iteration

�, we increase y∗(�−1)
i (I) to 1 for i = �. Meanwhile, we update z∗(�)j (I) =

∑
i ∈D j (I) y

∗(�)
i (I) − |D j (I)| + 1

for each j ∈ [M] and V ∗(�)(I) =
∑

j (z
∗(�)
j (I) · ψ (qj (I))) correspondingly. Recalling the definition of

DSQ (I), we thus have

V ∗(�)(I) −V ∗(�−1)(I) ≤ DSQ (I) · (1 − y
∗(�−1)
i (I)). (24)

After all iterations, since y∗(N)i (I) = 1 for any i ∈ [N], we have z∗(N)j = 1 for any j ∈ [M], which
further means

V ∗(N)(I) = Q(I). (25)

Finally, combining (22), (24), and (25), we can derive (23).
Now, let us compareV ∗(I) andQ(I, τ̃). Here, we can construct a valid solution of LP correspond-

ing to Q(I, τ̃) based on {y∗i (I)}i , {z
∗
j (I)}j . For each j, let uj (I) = z∗j (I) · ψ (qj (I)). Since z∗j (I) ∈ [0, 1],

we can ensure uj (I) ∈ [0,ψ (qj (I))] for any j ∈ [M]. The constraints
∑

j ∈Ci (I)(z
∗
j (I) ·ψ (qj (I))) ≤ τ̃ for

all i ∈ [N] implies
∑

j ∈Ci (I) uj (I) ≤ τ̃ . Therefore, {uj (I)}j is a valid solution of the LP of Q(I, τ̃) and
the corresponding objective value is V ∗(I). Above all,

V ∗(I) ≤ Q(I, τ̃) ≤ Q(I). (26)

Combining (23) and (26), we have

|Q(I) −Q(I, τ̃)| ≤
18DSQ (I)

ε
ln

(
4 log(2DSQ (I))

β

)
.

With the same procedure as the proof of Theorem 6.4, we can derive the target error bound for
Q̃(I). �

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:23

6.3 Handling SPJA Queries

While ExpOPT2 and OPT2 achieve instance optimality in answering arbitrary SJA queries, unfor-
tunately it cannot be directly applied to SPJA queries since they breach privacy, as illustrated in
the following example.

Example 6.9. Recall the SPJA queryQ ′ in Example 5.5. Givenm, n, consider the instance I where
I(R1) = {(ai) : i ∈ [n]}, I(R2) = {(ai ,bj) : i ∈ [n], j ∈ [(i − 1)m + 1, im]}, and the instance I′ where
I(R1) = {(ai) : i ∈ [n + 1]}, I(R2) = {(ai ,bj) : i ∈ [n], j ∈ [(i − 1)m + 1, im]} ∪ {(an+1,bj) : j ∈ [nm]}.
It is trivial that I ∼ I′, I ⊆ I′.

We can compute DSQ ′ (I
′) = 0 and DSQ ′ (I) = m. When we apply ExpOPT2, for any τ < m, we

get F (I′,τ) = n + 1 and F (I,τ) = 0. Note that both m and n can be arbitrarily large, and therefore
we cannot bound the sensitivity of F (·,τ) for any τ . Thus, Lemma 6.2 no longer holds, and SVT
does not satisfy DP. �

This is because the downward local sensitivity may decrease a lot when some users are inserted
and Lemma 6.2 no longer holds. For OPT2, the problem is more challenging. Recall the idea of
OPT2 is to formulate F (I,τ) as an ILP and relax that to an LP. However, for SPJA queries, we even
do not know how to formulate F (I,τ) as an ILP.

To address this issue, recall the definition of indirect sensitivity

ISQ (I) = max
tP ∈I(RP)

SQ (I, tP).

It is irrelevant to the projection operator and always increases when tuples are added. There-
fore, we can use indirect sensitivity to extend the measurement G(·,τ) to arbitrary SPJA
queries.

For any τ ∈ N, let F̄ (I,τ) denote the maximum size of the primary private relation instance over
any I′ ⊆ I whose indirect sensitivity is bounded by τ—that is,

F̄ (I,τ) = max
I′′⊆I, I SQ (I′′)≤τ

|I′′(RP)|,

and
Ḡ(I,τ) = F̄ (I,τ) − N .

With a similar proof as before, we can show the following lemma.

Lemma 6.10. For any I and any τ , Ḡ(I,τ) ≤ 0 and if τ ≥ ISQ (I), the Ḡ(I,τ) = 0.

Lemma 6.11. For any τ ∈ N, Ḡ(·,τ) has global sensitivity 1.

Then, we replacesG(I,τ)with Ḡ(I,τ) in ExpOPT2. Moreover, after selecting τ̃ , we truncate with
the LP for SPJA queries introduced in Section 5.2 instead. Due to Lemma 6.10 and 6.11, for arbitrary
SPJA query, ExpOPT2 preserves ε-DP with a similar proof as SPA queries. The utility analysis is
also similar.

Theorem 6.12. On any instance I, ExpSPJA returns a Q̃(I) such that with probability at least 1−β ,

|Q̃(I) −Q(I)| ≤
24ISQ (I)

ε
ln

(
4 log(2ISQ (I))

β

)
.

For SPJA queries, ExpOPT2 also requires an exponential running time for computing F̄ (I,τ)
while we can further propose an algorithm that can run in polynomial time by simulating F̄ (I,τ)
with LP. It is interesting to see that LP is exactly the one for F̂ (I,τ). That is because in F̂ (I,τ), we
simulate DSQ (I

′′) ≤ τ by SQ (I
′′, ti (I)) ≤ τ for all i ∈ [N] since DSQ (I

′′) = maxi ∈[N] SQ (I
′′, ti (I)).

For SPJA queries, we have ISQ (I
′′) = maxi ∈[N] SQ (I

′′, ti (I)). Therefore, we can use SQ (I
′′, ti (I)) ≤ τ

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:24 W. Dong et al.

for all i ∈ [N] to simulate ISQ (I
′′) ≤ τ accordingly. We also follow Ĝ(I,τ) = F̂ (I,τ) − N . Due

to Lemma 6.6, OPT2 still preserves ε-DP. We finally show that OPT2 can achieve the same
error bounds as ExpOPT2 for arbitrary SPJA query. Due to Lemma 6.6, OPT2 preserves ε-DP
with a similar proof as before. We finally show that OPT2 can achieve the same error bounds
as ExpOPT2.

Theorem 6.13. On any instance I, OPT2 returns a Q̃(I) such that with probability at least 1 − β ,

|Q̃(I) −Q(I)| ≤
24ISQ (I)

ε
ln

(
4 log(2ISQ (I))

β

)
.

Proof. Let {y∗i (I)}i , {z
∗
j (I)}j be the corresponding solutions of F̂ (I, τ̃). For each j ∈ [M], let

u∗j (I) = z∗j (I) ·ψ (qj (I)). Recall L = |πy J (I)| and pk (I) is the k-th result in πy J (I). For each k ∈ [L], let
v∗

k
(I) = min(

∑
j ∈Ek (I)

u∗j (I),ψ (pk (I))), where Ek (I) := {j : pk = πyqj (I)}. Let V ∗(I) =
∑

k v
∗
k
(I).

Similar to the proof of Theorem 6.8, we have with probability at least 1 − β

2 ,

τ̃ ≤ 2ISQ (I), (27)

and

N −
∑

i

y∗i (I) ≤
18

ε
ln

(
4(log(2ISQ (I)) + 2)

β

)
. (28)

We next show that on the one hand,

Q(I) −V ∗(I) ≤
18ISQ (I)

ε
ln

(
4 log(2ISQ (I))

β

)
, (29)

and on the other hand,
V ∗(I) ≤ Q(I, τ̃) ≤ Q(I). (30)

Combine (29) and (30), we have

|Q(I) −Q(I, τ̃)| ≤
18ISQ (I)

ε
ln

(
4 log(2ISQ (I))

β

)
.

Finally, we can derive the same error bound with the same proof of Theorem 6.8.
For (29), we again prove it by increasing the values iteratively. The superscript is used to show

the iteration and the original ones are regarded as the values at the iteration 0. At iteration �, we

increase y∗(�−1)
i (I) to 1 for i = �. We then update z∗(�)j (I) =

∑
i ∈D j (I) y

∗(�)
i (I) − |D j (I)| + 1, u∗(�)j (I) =

z∗(�)j (I) · ψ (qj (I)) and v∗(�)
k
(I) = min(

∑
j ∈Ek (I)

u∗(�)j (I),ψ (pk (I))). Letting V ∗(k)(I) =
∑

k v
∗(�)
k
(I), we

have

V ∗(�)(I) −V ∗(�−1)(I) ≤ ISQ (I) ·
(
1 − y∗(�−1)

i (I)
)
. (31)

After all iterations, since y∗(N)i (I) = 1 for any i ∈ [N], we have z∗(N)j (I) = 1 for any j ∈ [M],

u∗(N)j (I) = ψ (qj (I)) for any j ∈ [M], and v∗(N)
k
(I) = ψ (pk (I)) for any j ∈ [L]. Thus,

V ∗(N)(I) = Q(I). (32)

Combining (28), (31), and (32), we can derive (29).
For (30), we show that {u∗j (I)}j , {v

∗
k
(I)}k is a valid solution of the LP forQ(I, τ̃). Since z∗j (I) ∈ [0, 1],

we can ensure u∗j (I) ∈ [0,ψ (qj (I))] for any j ∈ [M]. For any i ∈ [N],
∑

j ∈Ci (I)(z
∗
j (I) · ψ (qj (I))) ≤ τ̃

implies
∑

j ∈Ci (I) u
∗
j (I) ≤ τ̃ . Moreover, as we definev∗

k
(I) = min(

∑
j ∈Ek (I)

u∗j (I),ψ (pk (I))), bothv∗
k
(I) ≤∑

j ∈Ek (I)
u∗j (I) and 0 ≤ v∗

k
(I) ≤ ψ (pk (I)) are satisfied for any k ∈ [L]. Therefore, {u∗j (I)}j , {v

∗
k
(I)}k is

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:25

a valid solution of the LP of Q(I, τ̃) and the corresponding objective value is V ∗(I). Above all, we
can derive (30) since the LP maximizes the objective function. �

7 Utility Analysis of Tao et al.

In the previous sections, we show both R2T and OPT2 achieve an error proportional to DSQ (I)

for each instance I. In this section, we show that the error of the algorithm in the work of Tao
et al. [52], which only works for self-join-free queries, actually performs almost the same as the
Laplace mechanism. More precisely, Tao et al. [52] make truncation by tuples’ sensitivity, and the
algorithm to find the truncation threshold is based on an upper bound on tuple sensitivities. It is
denoted as � in the work of Tao et al. [52], but we observe that this is just the global sensitivity. So
we denote this given upper bound asGSQ . Note that a trivial method is to set τ = GSQ , which has
no bias while the error is O

(
GSQ log(1/β)/ε

)
with probability 1− β . The mechanism for choosing

τ in the work of Tao et al. [52] is DP, but we show in the following that it is not much better than
this naive choice, on any instance I. More precisely, we show that its error is Ω

(
GSQ/(log(GSQ)ε)

)
with at least constant probability.

Recall the algorithm first constructs a DP-version of the query result

Q̂(I) = Q(I) + Lap

(
GSQ

ε

)
.

Based on this, we can see

Pr[Q̂(I) ≥ Q(I) +GSQ/ε] =
1

2e
.

Then, recallQ(I,τ) is the query result after truncating the tuples with sensitivity larger than τ , and
Q(I,τ) ≤ Q(I). Then, when Q̂(I) ≥ Q(I) +GSQ/ε , for any τ < GSQ/(6 ln(GSQ/β)),

Pr[Q(I,τ) + Lap(2τ/ε) + Lap(4τ/ε) ≥ Q̂(I)]

≤Pr[Q(I) + Lap(2τ/ε) + Lap(4τ/ε) ≥ Q̂(I)]

≤Pr[Lap(2τ/ε) ≥ GSQ/(3ε)] + Pr[Lap(4τ/ε) ≥ 2GSQ/(3ε)]

≤
β

GSQ .

By a union bound, the SVT stops before τ = GSQ/(6 ln(GSQ/β)) with probability less than
β . Above all, with probability at least 1

2e
− β , the truncation threshold selected is at least

GSQ/(6 ln(GSQ/β)).Denote E as the event τ ≥ GSQ/(6 ln(GSQ/β)) and Pr[E] ≥ 1
2e
− β . Then,

we have

Pr[|Q(I,τ) + Lap(τ/ε) −Q(I)| ≥ GSQ/(6ε ln(GSQ/β))|E]

≥Pr[Q(I,τ) + Lap(τ/ε) ≤ Q(I) −GSQ/(6ε ln(GSQ/β))|E]

≥Pr[Lap(τ/ε) ≤ −GSQ/(6ε ln(GSQ/β))|E] (33)

≥
1

2e
. (34)

As such, (33) is because, for any τ , Q(I,τ) ≤ Q(I).
Above all,

Pr[|Q(I,τ) + Lap(τ/ε) −Q(I)| ≥ GSQ/(6ε ln(GSQ/β))]

≥Pr[|Q(I,τ) + Lap(τ/ε) −Q(I)| ≥ GSQ/(6ε ln(GSQ/β))|E] × Pr[E]

≥

(
1

2e
− β

)
1

2e
.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:26 W. Dong et al.

By setting β = 1
4e

, with probability at least 1
8e2 , we have

|M(I) −Q(I)| ≥ GSQ/(6ε ln(4eGSQ)).

Note that this analysis holds for every instance I, namely the mechanism in the work of Tao et al.
[52] adds the same amount of noise to all instances, which equals the worst-case noise (ignoring
a logarithmic factor).

8 Multiple Primary Private Relations

Now we consider the case with k ≥ 2 primary private relations R1
P , . . . ,R

k
P

. In this case, two
instances are considered neighbors if one can be obtained from the other by deleting a set of
tuples, all of which reference the same tuple that belongs to some Ri

P
, i ∈ [k]. We reduce it

to the case with only one primary private relation as follows. Add a new column ID to every
I(Ri

P
), i ∈ [k], and assign unique identifiers to all tuples in these relations. Next, we construct a

new relation RP (ID), whose physical instance I(RP) consists of all these identifiers. For each Ri
P

,
we add an FK constraint from its ID column to reference the ID column of RP . Note that this FK
reference relationship is actually a bijection between the ID column in RP and all identifiers in
the primary private relations. Now, we designate RP as the only primary private relation, whereas
Ri

P
, i ∈ [k] all become secondary private relations. The original secondary private relations

(i.e., those having FK references to the Ri
P

’s directly or indirectly) are still secondary private
relations.

It is not hard to see that (1) the query answer is not affected by this schema change; (2) two
instances in the original schema are neighbors if and only if they are neighbors in the new schema;
and (3) the join results that reference any tuple t ∈ I(Ri

P
), i ∈ [k] are the same as those that reference

tP ∈ I(RP), where tP and t have the same identifier. Thus, both the privacy and utility guarantees
of our algorithm continue to hold.

Finally, it is worth pointing out that the preceding reduction is conceptual; in the actual imple-
mentation, there is no need to construct the new primary private relation and the additional ID
columns, as illustrated in Example 9.1 of the next section.

9 System Implementation

Based on R2T and OPT2, we have implemented two systems on top of PostgreSQL and CPLEX.
The system structures respectively are shown in Figures 3 and 4. The input to our system is any
SPJA query written in SQL, together with a designated primary private relation RP (interestingly,
while the mechanisms satisfy the DP policy with FK constraints, the algorithm itself does not need
to know the PK-FK constraints).

Both two systems support SUM and COUNT aggregation, and they share a similar process. For both
of them, our SQL parser first unpacks the aggregation into a reporting query so as to findψ (qj (I))

for each join result, as well as Ci (I) and D j (I), which store the referencing relationships between
tuples in I(RP) and J (I).

Example 9.1. Suppose we use the TPC-H schema (shown in Figure 5), where we designate
Supplier and Customer as primary private relations. Consider the following query.

SELECT SUM(price ∗ (1 − discount))

FROM Supplier, Lineitem, Orders, Customer

WHERE Supplier.SK = Lineitem.SK AND Lineitem.OK = Orders.OK

AND Orders.CK = Customer.CK AND Orders.orderdate >=′ 2020 − 08 − 01′

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:27

Fig. 3. System structure for R2T.

We rewrite it as follows.

SELECT Supplier.SK, Customer.CK, price ∗ (1 − discount)

FROM Supplier, Lineitem, Orders, Customer

WHERE Supplier.SK = Lineitem.SK AND Lineitem.OK = Orders.OK

AND Orders.CK = Customer.CK AND Orders.orderdate >=′ 2020 − 08 − 01′

The price ∗ (1 − discount) column in the query results gives all the ψ (qj (I)) values, whereas
Supplier.SK and Customer.CK yield the referencing relationships from each supplier and customer
to all the join results to which they contribute. �

We execute the rewritten query in PostgreSQL and export the query results to a file. Next, we
feed the results to CPLEX and then combine the LP results as indicated by our mechanisms to
obtain the privatized output. More precisely, R2T and OPT2 compute Q(I,τ) and F̂ (I,τ) across
values of τ = 2, 4, 8, . . . ,GSQ respectively, each of which is derived from solving an LP. Notice that
LP formulation of F̂ (I,τ) is more complex than Q(I,τ). To compute the final output, R2T adopts a
straightforward approach, applying noise directly to each Q(I,τ) and selecting the maximum for
the output. In contrast, OPT2 incorporates a series of more elaborate steps. It first inputs F̂ (I,τ)’s
into an SVT to determine an appropriate truncation threshold τ̃ . Then, OPT2 executes an LP to
compute the truncated result, which is finally outputted after adding a noise proportional to τ̃ .
Overall, OPT2 involves more complex computational steps compared to R2T, but as mentioned,
OPT2 yields a better utility in theory.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:28 W. Dong et al.

Fig. 4. System structure for OPT2.

Besides, for both mechanisms, the computation bottleneck is the LPs. This takes polynomial
time but can still be very expensive in practice. One straightforward optimization is to solve them
in parallel. In the following, we further present an effective technique, which can be used to speed
up this process for both R2T and OPT2.

9.1 Early Stop

Early Stop for R2T. For R2T, the key observation is that it returns the maximum ofO
(
log(GSQ)

)
maximization LPs (masked by some noise and reduced by a factor), and most LP solvers (e.g.,
CPLEX) for maximization problems use some iterative search technique to gradually approach the
optimum from below—namely, these O

(
log(GSQ)

)
LP solvers all “race to the top.” Thus, we will

not know the winner until they all stop.
To cut down the unnecessary search, the idea is to flip the problem around. Instead of solving

the primal LPs, we solve their duals. By LP duality, the dual LP has the same optimal solution as
the primal, but importantly, the LP solver will approach the optimal solution from above—namely,
we have a gradually decreasing upper bound for the optimal solution of each LP. This allows us
to terminate those LPs that have no hope to be the winner. The optimized R2T algorithm, shown
in Algorithm 3, also uses the trick that the noises are generated before we start running the LP
solvers so that we know when to terminate.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:29

Fig. 5. The FK graph of the TPC-H schema.

ALGORITHM 3: R2T with early stop

Input: I, ε , β , Q ,RP , GSQ

1 Q̃(I) ← 0;

2 for τ (�) ← GSQ ,GSQ /2, . . . , 2 do in parallel

3 v(�) ← Lap
(
log(GSQ)

τ (�)

ε

)
− log(GSQ) ln

(
log(GSQ)

β

)
· τ (�)

ε ;

4 for k ← 1, 2, . . . do

5 if Q̂(k)(I,τ (�)) achieves the optimal then

6 Q̃(I) ← max(Q̃(I), Q̂(k)(I,τ (�)) +v(�));

7 Break;

8 else if Q̂(k)(I,τ (�)) +v(�) ≤ Q̃(I) then

9 Break;

10 end

11 end

12 end

13 return Q̃(I);

In Algorithm 3, we use k to denote the iteration of the LP solver and use Q̂ (k)(I,τ) to denote the
solution to the dual LP at the k-th iteration. A technicality is that in line 1, we should initialize
Q̃(I) to Q(I, 0) to be consistent with the R2T algorithm, but Q(I, 0) = 0 for all truncation methods
described in this article.

When there are not enough CPU cores to solve all LPs in parallel, we choose to start with those
with a larger τ in line 3 of Algorithm 3. This is based on our observation that those LPs tend to
terminate faster. This is quite intuitive: when τ is larger, the optimal solution is also higher, thus
the LP solver for the dual can terminate earlier.

Early Stop for OPT2. For OPT2, we need to solveO
(
log(DSQ (I))

)
number of LPs for F (I,τ)’s and

one LP forQ(I, τ̃). While we need the exact value for the last LP forQ(I, τ̃), we can apply the similar
“early stop” idea to the LPs for F (I,τ)’s.

The algorithm is shown in Algorithm 4, where k is the iteration of the LP solver, and F̂ (k)(I,τ) de-
notes the solution to the dual LP at thek-th iteration. Note that as we define Ĝ(I,τ) = F̂ (I,τ)−N , the
algorithm SVT(−9 ln(4/β)/ε, 2ε/3, Ĝ(I, 2), Ĝ(I, 4), Ĝ(I, 8), . . .) is exactly the same as the algorithm
SVT(N − 9 ln(4/β)/ε, 2ε/3, F̂ (I, 2), F̂ (I, 4), F̂ (I, 8), . . .).

In Algorithm 4, we use �̃ to store the candidate output of the SVT and initialize it to +∞. We
first compute T̃ as in SVT and generate all noises before solving the LPs. Then, at each iteration

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:30 W. Dong et al.

ALGORITHM 4: OPT2 with early stop

Input: I, ε , β , Q , RP

1 �̃ ← +∞;

2 T ← N − 9 ln(4/β)/ε ;

3 T̃ ← T + Lap(3/ε);

4 for � ← 1, 2, . . . do in parallel

5 τ (�) ← 2� ;

6 v(�) ← Lap(6/ε);

7 for k ← 1, 2, . . . do

8 if � ≥ �̃ then

9 Break;

10 else if F̂ (k)(I,τ (�)) achieves the optimal then

11 if F̂ (k)(I,τ (�)) +v(�) > T̃ then

12 if � ≤ �̃ then

13 �̃ ← �;

14 Break;

15 end

16 end

17 else if F̂ (k)(I,τ (�)) +v(�) ≤ T̃ then

18 Break;

19 end

20 end

21 end

22 τ̃ ← 2�̃ ;

23 Q̃(I) ← Q(I, τ̃) + Lap
(

3τ̃
ε

)
;

24 return Q̃(I);

k , if the LP achieves the optimal, we check whether the SVT would stop, and if so, we store the
corresponding � as the candidate output. Otherwise, if F̂ (k)(I,τ (�)) + v(�) ≤ T̃ , since the LP solver
approaches the optimal solution from above, we know that F̂ (I,τ (�)) + v(�) < T̃ , thus we can
terminate this LP. Moreover, when we get some candidate output �̃, we directly terminate all LPs
F̂ (I,τ (�))’s with � ≥ �̃ since the SVT must stop at or before �̃.

The improvement brought by the early stop technique is that we reduce the computation of
F̂ (I,τ) for some small τ ’s. It seems this step can only reduce the computation by a constant factor;
however, the improvement is large in practice: the computational cost of F̂ (I,τ) increases largely as
τ decreases. This is intuitive. Recall τ is the constraint for the contribution of each user and F̂ (I,τ)
maximizes the number of users. When τ is large, most constraints are satisfied automatically, and
thus we can search for the optimal solution fast. This also matches the case of R2T.

10 Experiments

We conducted experiments on two types of queries: graph pattern counting queries under node-
DP and general SPJA queries with FK constraints, with the former being an important special case
of the latter. For graph pattern counting queries, we compare R2T and OPT2 with naive truncation
with smooth sensitivity (NT) [33], the smooth distance estimator (SDE) [9], the recursive mech-
anism (RM) [11], and the LP-based mechanism (LP) [33]. For general SPJA queries, we compare
with the local sensitivity-based mechanism (LS) [52].

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:31

TPC-H Queries

Primary private relation Selection attribute Projection attributeAggregation attribute

Sub-graph Counting Queries

Fig. 6. The structure of queries.

Table 1. Graph Datasets Used in the Experiments

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA

Nodes 144,000 262,000 335,000 1,090,000 1,970,000

Edges 847,000 900,000 926,000 1,540,000 2,770,000

Maximum degree 420 420 549 9 12

Degree upper bound D 1,024 1,024 1,024 16 16

10.1 Setup

Queries. For graph pattern counting queries, we used four queries: edge counting Q1−, length-2
path counting Q2−, triangle counting Q�, and rectangle counting Q�. For SPJA queries, we used
10 queries from the TPC-H benchmark, whose structures are shown in Figure 6. These queries
involve a good mix of selection, projection, join, and aggregation. We removed all the group-by
clauses from the queries—a brief discussion on this is provided at the end of the article.

Datasets. For graph pattern counting queries, we used 5 real world networks datasets: Deezer,
Amazon1, Amazon2, RoadnetPA, and RoadnetCA. Deezer collects the friendships of users from
the music streaming service Deezer. Amazon1 and Amazon2 are two Amazon co-purchasing net-
works. RoadnetPA and RoadnetCA are road networks of Pennsylvania and California, respectively.
All these datasets are obtained from SNAP [35]. Table 1 shows the basic statistics of these datasets.

Most algorithms need to assume aGSQ in advance. Note that the value ofGSQ should not depend
on the instance but may use some background knowledge for a particular class of instances. Thus,
for the three social networks, we set a degree upper bound of D = 1024, whereas for the two road

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:32 W. Dong et al.

networks, we set D = 16. Then we setGSQ as the maximum number of graph patterns containing
any node. This means GSQ1− = D, GSQ2− = GSQ� = D2, and GSQ� = D3. For TPC-H queries, we
used datasets of scale 2−3, 2−2, . . . , 23. The one with scale 1 (default scale) has about 7.5 million
tuples, and we set GSQ = 106.

The LP mechanism requires a truncation threshold τ , but Kasiviswanathan et al. [33] do not dis-
cuss how this should be set. Initially, we used a random threshold uniformly chosen from [1,GSQ].
This turned out to be very bad, as with constant probability, the picked threshold is Ω(GSQ), which
makes these mechanisms as bad as the naive mechanism that adds GSQ noise. To achieve better
results, as in R2T, we consider {2, 4, 8, . . . ,GSQ } as the possible choices. Similarly, NT and SDE
need a truncation threshold θ on the degree, and we choose one from {2, 4, 8, . . . ,D} randomly.

Experimental Environment. All experiments were conducted on a Linux server with a 24-core
2.2GHz Intel Xeon CPU and 256GB of memory. Each program was allowed to use at most 10
threads, and we set a time limit of 6 hours for each run. Each experiment was repeated 20 times,
and we report the average running time. The errors are less stable due to the random noise, so we
remove the best 4 and worst 4 runs, and report the average error of the remaining 12 runs. The
failure probability β in R2T is set to 0.1. The default DP parameter is ε = 0.8.

10.2 Graph Pattern Counting Queries

Utility and Efficiency. The errors and running times of all mechanisms over the graph pattern
counting queries are shown in Table 2. These results indicate a clear superiority of R2T and OPT2

in terms of utility, offering order-of-magnitude improvements over other methods in many cases.
What is more desirable is its robustness: in all 20 query-dataset combinations, R2T consistently
achieves an error below 20%, whereas the error is below 10% in all but 3 cases. Meanwhile, OPT2

can be computed within a 6-hour time limit in 17 cases, where the error is always below 10% and
is below 1% in all but 4 cases. We also notice that, given a query, R2T and OPT2 perform better in
road networks than social networks. This is because their errors are proportional to DSQ (I) by our
theoretical analysis. Thus, the relative error is proportional to DSQ (I)/|Q(I)|. Therefore, larger and
sparser graphs, such as road networks, lead to smaller relative errors. Besides, OPT2 always has a
smaller error than R2T and the gap can be as large as 20x, which confirms our theoretical analysis
that OPT2 has a smaller optimality ratio than R2T.

In terms of running time, all mechanisms are reasonable except RM. RM can only complete
within the 6-hour time limit on three cases, although it achieves small errors on these three cases.
In addition, SDE is faster than RM but runs a bit slower than others in most cases. OPT2 has good
efficiency in all query-dataset combinations except five cases where the running time is over 1 hour.
Furthermore, compared with R2T, OPT2 always has much more running time. That is because, even
though OPT2 and R2T solve O(logDSQ (I)) and O(logGSQ) LPs, respectively, the LPs for OPT2 are
a bit more complex than R2T. Overall, OPT2 and R2T do not dominate each other. OPT2 has higher
utility while R2T has higher efficiency. Besides, another interesting observation is R2T sometimes
even runs faster than LP, despite the fact that R2T needs to solve O(logGSQ) LPs. This is due to
the early stop optimization: the running time of R2T is determined by the LP that corresponds to
the near-optimal τ , which often happens to be one of the LPs that can be solved fastest.

Privacy Parameter ε . Next, we conducted experiments to see how the privacy parameter ε affects
various mechanisms. We tested different queries on RoadnetPA where we vary ε from 0.1 to 12.8.
We plot the results in Figure 7, where we also plot the query result to help see the utilities of the
mechanisms. The first message from the plot is the same as before, that all R2T, OPT2, and RM
achieve high utility (but RM spends 200x more time). NT and SDE lose utility (i.e., error larger

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:33

Table 2. Comparison among R2T, OPT2, Naive Truncation with Smooth Sensitivity (NT), the

Smooth Distance Estimator (SDE), the LP-Based Mechanism (LP), and the Recursive Mechanism

(RM) on Graph Pattern Counting Queries

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA

q1−

Query result 847,000 900,000 926,000 1,540,000 2,770,000
Query Running Time(s) 1.28 1.52 1.62 1.51 2.64

R2T
Relative error(%) 0.535 0.557 0.432 0.0114 0.00635

Time(s) 12.3 15.6 16.2 26.8 48.7

OPT2 Relative error(%) 0.327 0.329 0.218 0.00127 0.000932
Time(s) 165 194 209 223 411

NT
Relative error(%) 59.1 101 125 1,370 1,410

Time(s) 18.1 29.3 40.4 21.9 39.7

SDE
Relative error(%) 548 363 286 55.2 81.8

Time(s) 9,870 4,570 1,130 105 292

LP
Relative error(%) 14.3 5.72 6.75 3.6 3.02

Time(s) 16.9 14.7 14.4 28.3 54

q2−

Query result 21,800,000 9,120,000 9,750,000 3,390,000 6,000,000
Query Running Time(s) 13.8 11.8 13.8 6.39 6.06

R2T
Relative error(%) 6.64 12.2 9.06 0.0539 0.0352

Time(s) 356 170 196 80.2 145

OPT2 Relative error(%)
Over time limit

4.66 0.0108 0.00166
Time(s) 20,900 830 1,800

NT
Relative error(%) 116 398 390 6,160 6,530

Time(s) 21.0 28.4 41.0 23.2 44.2

SDE
Relative error(%) 8,900 5,110 1,930 211 228

Time(s) 9,870 4,570 1,130 104 296

LP
Relative error(%) 35.9 23.2 27.8 11.1 13.3

Time(s) 8,820 3,600 461 148 404

q�

Query result 794,000 718,000 667,000 67,200 121,000
Query Running Time(s) 4.53 5.03 4.20 2.96 5.17

R2T
Relative error(%) 5.58 1.27 2.03 0.102 0.061

Time(s) 17.3 18.8 19.9 4.21 7.5

OPT2 Relative error(%) 1.05 0.542 0.359 0.0245 0.0258
Time(s) 334 225 225 5.74 11.3

NT
Relative error(%) 782 1,660 1,920 110,000 105,000

Time(s) 23.0 31.7 41.0 23.3 45.0

SDE
Relative error(%) 67,300 26,000 9,600 4,150 3,830

Time(s) 9,880 4,570 1,130 106 297

LP
Relative error(%) 24.6 12.8 14.2 0.104 0.0625

Time(s) 131 18.2 18.3 3.95 7.06

RM
Relative error(%)

Over time limit
0.0388 0.0193

Time(s) 1,280 2,550

q�

Query result 11,900,000 2,480,000 3,130,000 158,000 262,000
Query Running Time(s) 74.3 21.6 15.6 4.50 10.1

R2T
Relative error(%) 16.9 6.29 10.5 0.0729 0.0638

Time(s) 289 70.5 86.8 8.18 16.2

OPT2 Relative error(%)
Over time limit

2.36 2.48 0.0166 0.00599
Time(s) 1,920 4,510 28.8 46.1

NT
Relative error(%) 3,750 30,700 26,100 319,000 368,000

Time(s) 57.6 35.8 50.6 24.8 45.0

SDE
Relative error(%) 6,970,000 11,400,000 202,000 10,300 9,130

Time(s) 9,930 4,580 1,140 108 300

LP
Relative error(%) 92.6 94.8 77.8 0.223 0.165

Time(s) 2,530 70.4 81.2 7.83 14.2

RM
Relative error(%)

Over time limit
0.0217

Over time limit
Time(s) 10,500

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:34 W. Dong et al.

Fig. 7. Error levels of various mechanisms on graph pattern counting queries over RoadnetPA with various

values of ε .

Table 3. Error Levels of R2T, OPT2, and the LP-Based Mechanism (LP) with

Different τ for Queries on Amazon2

Query Q1− Q2− Q� Q�
Query result 926,000 9,750,000 667,000 3,130,000

R2T 4,000 883,000 13,500 328,000
OPT2 2020 455,000 2,400 77,400

LP

τ = GSQ 1,440 1,580,000 1,290,000 1,370,000,000
τ = GSQ/8 2,100 181,000 157,000 140,000,000
τ = GSQ/64 110,000 259,000 15,100 25,800,000
τ = GSQ/512 645,000 1,260,000 2,790 2,630,000
τ = GSQ/4096 810,000 3,950,000 2,090 274,000
τ = GSQ/32768 911,000 7,580,000 92,300 48,700
τ = GSQ/262144 924,000 9,340,000 459,000 76,400

Average error 62,500 2,710,000 94,900 2,430,000

than query result) except for very large ε . LP achieves similar utility as R2T and OPT2 on Q� and
Q�, but it is much worse on Q1− and Q2−. In particular, a higher ε does not help LP on these two
queries, because the bias (further controlled by a randomly selected τ) dominates the error for
these two queries.

Selection of τ . In the next set of experiments, we dive deeper and see how sensitive the utility is
with respect to the truncation threshold τ . We tested the queries on Amazon2 and measured the
error of the LP-based mechanism [33] with different τ . For each query, we tried various τ from 2 to
GSQ and compared their errors with R2T. The results are shown in Table 3, where the optimal error

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:35

Table 4. Running Times of R2T and OPT2 for Q� with and without Early Stop

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA

Time(s)

R2T
With early stop 289 70.5 86.8 8.18 16.2

Without early stop 28,700 537 422 12.8 16.4
Speedup 99.3× 7.62 × 4.86× 1.56× 1.01×

OPT2
With early stop

Over time limit
1,920 4,510 28.8 46.1

Without early stop ≥ 384, 000 ≥ 451, 000 49 101
Speedup ≥ 200× ≥ 100× 1.7× 2.19×

Table 5. Comparison between R2T and the Local-Sensitivity-Based Mechanism (LS) on SQL Queries

Query Query result R2T OPT2 LS

Single primary
private relation

Q3
Value/Relative error(%) 2,890,000 0.254 0.0108 38.8

Time(s) 1.6 18.9 303 19.2

Q12
Value/Relative error(%) 6,000,000 0.0229 0.000345 16.3

Time(s) 1.24 28.2 194 25.8

Q20
Value/Relative error(%) 6,000,000 0.579 0.0454 15.4

Time(s) 1.25 24.5 648 24.4

Multiple primary
private relation

Q5
Value/Relative error(%) 240,000 1.626 0.089

Not
supported

Time(s) 2.51 8.42 36.2

Q8
Value/Relative error(%) 1,830,000 1.92 0.0336

Time(s) 1.41 39.6 497

Q21
Value/Relative error(%) 6,000,000 0.654 0.0397

Time(s) 2.32 124 2950

Sum aggregation

Q7
Value/Relative error(%) 218,000,000 0.607 0.0555

Time(s) 3.22 140 3580

Q11
Value/Relative error(%) 2,000,000 1.82 0.0253

Time(s) 0.29 4.41 82.9

Q18
Value/Relative error(%) 153,000,000 0.132 0.00826

Time(s) 2.21 42.7 1220

Projection Q10
Value/Relative error(%) 1,500,000 0.174 0.0341

Time(s) 0.32 8.77 684

is marked in gray. The results indicate that the error is highly sensitive to τ , and more importantly,
the optimal choice of τ closely depends on the query, and there is no fixed τ that works for all
cases. However, the errors of R2T and OPT2 are within a small constant factor (around 6 for R2T
and 2 for OPT2) to the optimal choice of τ , which is exactly the value of instance optimality.

Early Stop Optimization. We also did some experiments to compare the running time of R2T
with and without the early stop optimization. Here, we ran Q� over different datasets and the
results are shown in Table 4. From this table, we can see, for both R2T and OPT2, the early stop is
particularly useful in cases with long running times. In these cases, one or two LPs, which do not
correspond to the optimal choice of τ , take a long time to run, and early stop is able to terminate
these LPs as soon as possible.

10.3 SPJA Queries

Utility and Efficiency. We tested 10 queries from the TPC-H benchmark comparing R2T,
OPT2, and LS, and the results are shown in Table 5. We see that both R2T and OPT2 achieve

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:36 W. Dong et al.

Fig. 8. Running times and error levels of R2T and the local-sensitivity based mechanism (LS) for different

data scales.

order-of-magnitude improvements over LS in terms of utility. More importantly, R2T and OPT2

support a variety of SPJA queries that are not supported by LS, with robust performance across the
board. Besides, compared with graph pattern counting queries, the gap of error between R2T and
OPT2 is a bit larger, which can be as large as 100x. That is because we use larger GSQ in TPC-H
queries and OPT2 mainly reduces a log(GSQ) factor in error compared with R2T.

Scalability. To examine the effects as the data scale changes, we used TPC-H datasets with scale
factors ranging from 2−3 to 23 withQ3,Q12, andQ20. We compare both the errors and running times
of R2T, OPT2, and LS. The results are shown in Figure 8. From the results, we see that the errors
of R2T and OPT2 barely increase with the data size. The reason is that our errors only depend on

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

Instance-optimal Truncation for Differentially Private Query Evaluation 13:37

Fig. 9. Error levels of R2T and local-sensitivity based mechanism (LS) with different GSQ .

DSQ (I), which does not change much by the scale of TPC-H data. However, the behavior of LS is
more complicated. ForQ3 andQ20, its error increases with the data size; forQ12, its error increases
first but then decreases later. This is because LS runs an SVT on the sensitivities of tuples to choose
τ , which is closely related to the distribution of tuples’ sensitivities. This is another indication that
selecting a near-optimal τ is not an easy task. In terms of running time, both mechanisms have
the running time linearly increase with the data size, which is expected.

Dependency on GSQ . Our last set of experiments examines the effect GSQ brings to the utilities
of R2T, OPT2, and LS. We conducted experiments using Q12 and Q20 with different values of GSQ .
The results are shown in Figure 9. First, OPT2 is independent on GSQ and always achieves the
smallest error. For R2T and LS, when GSQ is small, the errors of these two mechanisms are very
close. When GSQ increases, the error of LS increases rapidly and loses the utility (error larger
than query result) very soon. Meanwhile, the error of R2T increases very slowly with GSQ . This
confirms our analysis that the error of LS grows near linearly as GSQ , whereas that of R2T grows
logarithmically. The important consequence is that, with R2T, one can be very conservative in
setting the value of GSQ . This gives the DBA a much easier job, in case she/he has little idea on
what datasets the database is expected to receive.

11 Additional Discussion

Following this work, there have been many efforts put into query evaluation in relational databases
under DP. For instance, Dong and Yi [23] improve the logarithmic factor in the error for self-join-
free queries, whereas Fang et al. [28] explore answering SPJA queries with Max aggregation. In
addition, Cai et al. [10] and Dong et al. [18] focus on answering multiple queries, and Dong et al.
[15, 17] investigate SPJA queries over dynamic databases. For more details, please refer to the
recent survey of Dong and Yi [21]. Moreover, by integrating this work with other works [18, 28],
we have developed a DP SQL system [56] capable of answering a broad class of queries that include
selection, projection, aggregation, join, and group by operations.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-

nications Security. 308–318.
[2] Kareem Amin, Alex Kulesza, Andres Munoz, and Sergei Vassilvtiskii. 2019. Bounding user contributions: A bias-

variance trade-off in differential privacy. In Proceedings of the International Conference on Machine Learning. 263–271.
[3] Galen Andrew, Om Thakkar, H. Brendan McMahan, and Swaroop Ramaswamy. 2019. Differentially private learning

with adaptive clipping. arXiv preprint arXiv:1905.03871 (2019).

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:38 W. Dong et al.

[4] Myrto Arapinis, Diego Figueira, and Marco Gaboardi. 2016. Sensitivity of counting queries. In Proceedings of the

International Colloquium on Automata, Languages, and Programming (ICALP’16).
[5] Hilal Asi and John C. Duchi. 2020. Instance-optimality in differential privacy via approximate inverse sensitivity

mechanisms. Advances in Neural Information Processing Systems 33 (2020), 1–12.
[6] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal Talwar. 2007. Privacy,

accuracy, and consistency too: A holistic solution to contingency table release. In Proceedings of the 26th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems. 273–282.
[7] Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private empirical risk minimization: Efficient algorithms

and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
IEEE, 464–473.

[8] Jaroslaw Błasiok, Mark Bun, Aleksandar Nikolov, and Thomas Steinke. 2019. Towards instance-optimal private query
release. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms. 2480–2497.

[9] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2013. Differentially private data analysis of social net-
works via restricted sensitivity. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science.
87–96.

[10] Kuntai Cai, Xiaokui Xiao, and Graham Cormode. 2023. PrivLava: Synthesizing relational data with foreign keys under
differential privacy. Proceedings of the ACM on Management of Data 1, 2 (2023), 1–25.

[11] Shixi Chen and Shuigeng Zhou. 2013. Recursive mechanism: Towards node differential privacy and unrestricted joins.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 653–664.

[12] Wei-Yen Day, Ninghui Li, and Min Lyu. 2016. Publishing graph degree distribution with node differential privacy. In
Proceedings of the 2016 International Conference on Management of Data. 123–138.

[13] Apple Differential Privacy Team. n.d. Learning with Privacy at Scale. Retrieved September 27, 2024 from https://docs-
assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf

[14] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry data privately. In Proceedings of the

31st International Conference on Neural Information Processing Systems (NIPS’17). 3574–3583.
[15] Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. 2024. Continual observation of joins under differential

privacy. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.
[16] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2022. R2T: Instance-optimal truncation

for differentially private query evaluation with foreign keys. In Proceedings of the 2022 International Conference on

Management of Data. 759–772.
[17] Wei Dong, Qiyao Luo, and Ke Yi. 2023. Continual observation under user-level differential privacy. In Proceedings of

the 2023 IEEE Symposium on Security and Privacy (SP’23). IEEE, 2190–2207.
[18] Wei Dong, Dajun Sun, and Ke Yi. 2023. Better than composition: How to answer multiple relational queries under

differential privacy. Proceedings of the ACM on Management of Data 1, 2 (2023), 1–26.
[19] Wei Dong and Ke Yi. 2021. Residual sensitivity for differentially private multi-way joins. In Proceedings of the ACM

SIGMOD International Conference on Management of Data.
[20] Wei Dong and Ke Yi. 2022. A nearly instance-optimal differentially private mechanism for conjunctive queries. In

Proceedings of the ACM Symposium on Principles of Database Systems.
[21] Wei Dong and Ke Yi. 2023. Query evaluation under differential privacy. ACM SIGMOD Record 52, 3 (2023), 6–17.
[22] Wei Dong and Ke Yi. 2023. Universal private estimators. In Proceedings of the ACM Symposium on Principles of Database

Systems.
[23] Wei Dong and Ke Yi. 2023. Universal private estimators. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems. 195–206.
[24] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating noise to sensitivity in private data

analysis. In Proceedings of the Theory of Cryptography Conference. 265–284.
[25] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. 2009. On the complexity of differen-

tially private data release: Efficient algorithms and hardness results. In Proceedings of the 41st Annual ACM Symposium

on Theory of Computing (STOC’09). ACM, New York, NY, USA, 381–390. https://doi.org/10.1145/1536414.1536467
[26] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of differential privacy. Foundations and Trends®

in Theoretical Computer Science 9, 3-4 (2014), 211–407.
[27] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Randomized aggregatable privacy-preserving

ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 1054–
1067.

[28] Juanru Fang, Wei Dong, and Ke Yi. 2022. Shifted inverse: A general mechanism for monotonic functions under user
differential privacy. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
1009–1022.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

https://doi.org/10.1145/1536414.1536467

Instance-optimal Truncation for Differentially Private Query Evaluation 13:39

[29] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A simple and practical algorithm for differentially private
data release. Advances in Neural Information Processing Systems 25 (2012), 2339–2347.

[30] Ziyue Huang, Yuting Liang, and Ke Yi. 2021. Instance-optimal mean estimation under differential privacy. In Proceed-

ings of the 35th Conference on Neural Information Processing Systems (NeurIPS’21). 1–12.
[31] Noah Johnson, Joseph P. Near, and Dawn Song. 2018. Towards practical differential privacy for SQL queries. Proceed-

ings of the VLDB Endowment 11, 5 (2018), 526–539.
[32] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. 2011. Private analysis of graph struc-

ture. Proceedings of the VLDB Endowment 4, 11 (2011), 1146–1157.
[33] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2013. Analyzing graphs with

node differential privacy. In Proceedings of the Theory of Cryptography Conference. 457–476.
[34] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala, Michael Hay, and Gerome Mik-

lau. 2019. PrivateSQL: A differentially private SQL query engine. Proceedings of the VLDB Endowment 12, 11 (2019),
1371–1384.

[35] Jure Leskovec and Andrej Krevl. 2016. SNAP Datasets: Stanford Large Network Dataset Collection (2014). Retrieved
September 27, 2024 from https://snap.stanford.edu/data

[36] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi. 2015. The matrix mechanism: Opti-
mizing linear counting queries under differential privacy. VLDB Journal 24, 6 (2015), 757–781.

[37] C. Lund and M. Yannakakis. 1993. The approximation of maximum subgraph problems. In Proceedings of the Interna-

tional Colloquium on Automata, Languages, and Programming.
[38] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars Vilhuber. 2008. Privacy: Theory

meets practice on the map. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering. IEEE,
277–286.

[39] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning differentially private recurrent
language models. arXiv preprint arXiv:1710.06963 (2017).

[40] Frank D. McSherry. 2009. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In
Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. 19–30.

[41] Arjun Narayan and Andreas Haeberlen. 2012. DJoin: Differentially private join queries over distributed databases. In
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 149–162.

[42] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. 2013. The geometry of differential privacy: The sparse and approx-
imate cases. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing. 351–360.

[43] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity and sampling in private data analysis.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing. 75–84.

[44] Catuscia Palamidessi and Marco Stronati. 2012. Differential privacy for relational algebra: Improving the sensitivity
bounds via constraint systems. In Proceedings of the 10th Workshop on Quantitative Aspects of Programming Languages

(QAPL’12). 92–105.
[45] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X. Yu, Sashank J. Reddi, and Sanjiv Kumar. 2019. AdaCliP:

Adaptive clipping for private SGD. arXiv preprint arXiv:1908.07643 (2019).
[46] Davide Proserpio, Sharon Goldberg, and Frank McSherry. 2014. Calibrating data to sensitivity in private data analysis.

Proceedings of the VLDB Endowment 7, 8 (2014), 637–648.
[47] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2014. Practical differentially private release of marginal contingency

tables. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 1435–1446.
[48] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Understanding hierarchical methods for differentially private

histograms. Proceedings of the VLDB Endowment 6, 14 (2013), 1954–1965.
[49] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. 2013. Stochastic gradient descent with differentially pri-

vate updates. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing. IEEE, 245–248.
[50] Uri Stemmer. 2021. Locally private k-means clustering. Journal of Machine Learning Research 22, 1 (2021), 7964–7993.
[51] Uri Stemmer and Haim Kaplan. 2018. Differentially private k-means with constant multiplicative error. Advances in

Neural Information Processing Systems 31 (2018), 1–11.
[52] Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. 2020. Computing local sensitivities of count-

ing queries with joins. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.
479–494.

[53] Salil Vadhan. 2017. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography. Springer,
347–450.

[54] Royce J. Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel Simmons-Marengo, and Bryant Gip-
son. 2020. Differentially private SQL with bounded user contribution. Proceedings on Privacy Enhancing Technologies

2020, 2 (2020), 230–250.

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

13:40 W. Dong et al.

[55] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2010. Differential privacy via wavelet transforms. IEEE Trans-

actions on Knowledge and Data Engineering 23, 8 (2010), 1200–1214.
[56] Jianzhe Yu, Wei Dong, Juanru Fang, Dajun Sun, and Ke Yi. 2024. DOP-SQL: A general-purpose, high-utility, and

extensible private SQL system. In Proceedings of the International Conference on Very Large Data Bases.
[57] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui Xiao. 2015. Private release of

graph statistics using ladder functions. In Proceedings of the 2015 ACM SIGMOD International Conference on Manage-

ment of Data. 731–745.
[58] Xiaojian Zhang, Rui Chen, Jianliang Xu, Xiaofeng Meng, and Yingtao Xie. 2014. Towards accurate histogram publica-

tion under differential privacy. In Proceedings of the 2014 SIAM International Conference on Data Mining. 587–595.

Received 24 March 2023; revised 13 December 2023; accepted 9 September 2024

ACM Trans. Datab. Syst., Vol. 49, No. 4, Article 13. Publication date: November 2024.

